64 research outputs found

    Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): an unjustified synonymy and overlooked range expansion

    Get PDF
    Antispila treitschkiella (Fischer von Röslerstamm, 1843) and A. petryi Martini, 1899, sp. rev. were regarded as synonymous since 1978, but are shown to be two clearly separated species with different hostplants, life histories, DNA barcodes and morphology. Antispila treitschkiella feeds on Cornus mas L., is bivoltine, and has, by following its ornamentally planted host, greatly expanded its range in north-western Europe. In contrast A. petryi feeds on the widespread native C. sanguinea L., is univoltine, and is one of only two Antispila species previously resident in the British Isles, the Netherlands and northern Europe. Consequently, the increase in abundance of A. treitschkiella in the Netherlands since the early 1990s and in Great Britain in recent years must be regarded as part of a recent expansion into north-western Europe, whereas the native A. petryi is hardly expanding and less abundant. In Britain, detailed surveys of parks and living collections confirmed the monophagy of these two species. A search of British herbarium samples provided no evidence for an earlier date of establishment. Information on recognition of all stages, including DNA barcodes, and distribution is provided, and these two species are compared with the third European Cornus L. leafminer, A. metallella (Denis & Schiffermüller, 1775)

    A new North American species of Etainia (Lepidoptera, Nepticulidae), feeding on Arbutus and Arctostaphylos species (Ericaceae)

    Get PDF
    Etainia thoraceleuca van Nieukerken, Epstein & Davis, sp. nov. is the second native American species of Etainia Beirne, 1945, and the second known Etainia species feeding on Ericaceae. The species is known from light-collected adults in the USA (California, Arizona) and Canada (Ontario). These were linked via DNA barcodes to larvae that make short leafmines on Arbutus and Arctostaphylos species, then continue feeding in stems and branches, causing damage in nurseries and planted trees in Sonoma and Marin Counties, California. The holotype was accidentally reared from Arbutus arizonica, without observing the damage. Life history and damage are described in detail. Damage in Arctostaphylos uva-ursi found in Washington State probably belongs to E. thoraceleuca, which is a sister species to the European E. albibimaculella (Larsen, 1927)

    Antispila oinophylla new species (Lepidoptera, Heliozelidae), a new North American grapevine leafminer invading Italian vineyards: taxonomy, DNA barcodes and life cycle

    Get PDF
    A grapevine leafminer Antispila oinophylla van Nieukerken & Wagner, sp. n., is described both from eastern North America (type locality: Georgia) and as a new important invader in North Italian vineyards (Trentino and Veneto Region) since 2006. The species is closely related to, and previously confused with A. ampelopsifoliella Chambers, 1874, a species feeding on Virginia creeper Parthenocissus quinquefolia (L.) Planchon., and both are placed in an informal A. ampelopsifoliella group. Wing pattern, genitalia, and DNA barcode data all confirm the conspecificity of native North American populations and Italian populations. COI barcodes differ by only 0–1.23%, indicating that the Italian populations are recently established from eastern North America. The new species feeds on various wild Vitis species in North America, on cultivated Vitis vinifera L. in Italy, and also on Parthenocissus quinquefolia in Italy. North American Antispila feeding on Parthenocissus include at least two other species, one of which is A. ampelopsifoliella. Morphology and biology of the new species are contrasted with those of North American Antispila Hübner, 1825 species and European Holocacista rivillei (Stainton, 1855). The source population of the introduction is unknown, but cases with larvae or pupae, attached to imported plants, are a likely possibility. DNA barcodes of the three European grapevine leafminers and those of all examined Heliozelidae are highly diagnostic. North American Vitaceae-feeding Antispila form two species complexes and include several as yet unnamed taxa. The identity of three out of the four previously described North American Vitaceae-feeding species cannot be unequivocally determined without further revision, but these are held to be different from A. oinophylla. In Italy the biology of A. oinophylla was studied in a vineyard in the Trento Province (Trentino-Alto Adige Region) in 2008 and 2009. Mature larvae overwinter inside their cases, fixed to vine trunks or training stakes. The first generation flies in June. An additional generation occurs from mid-August onwards. The impact of the pest in this vineyard was significant with more than 90% of leaves infested in midsummer. Since the initial discovery in 2006, the pest spread to several additional Italian provinces, in 2010 the incidence of infestation was locally high in commercial vineyards. Preliminary phylogenetic analyses suggest that Antispila is paraphyletic, and that the Antispila ampelopsifoliella group is related to Coptodisca Walsingham, 1895, Holocacista Walsingham & Durrant, 1909 and Antispilina Hering, 1941, all of which possess reduced wing venation. Vitaceae may be the ancestral hostplant family for modern Heliozelidae

    Wolbachia in butterflies and moths: geographic structure in infection frequency.

    Get PDF
    INTRODUCTION: Butterflies and moths (Lepidoptera) constitute one of the most diverse insect orders, and play an important role in ecosystem function. However, little is known in terms of their bacterial communities. Wolbachia, perhaps the most common and widespread intracellular bacterium on Earth, can manipulate the physiology and reproduction of its hosts, and is transmitted vertically from mother to offspring, or sometimes horizontally between species. While its role in some hosts has been studied extensively, its incidence across Lepidoptera is poorly understood. A recent analysis using a beta-binomial model to infer the between-species distribution of prevalence estimated that approximately 40 % of arthropod species are infected with Wolbachia, but particular taxonomic groups and ecological niches seem to display substantially higher or lower incidences. In this study, we took an initial step and applied a similar, maximum likelihood approach to 300 species of Lepidoptera (7604 individuals from 660 populations) belonging to 17 families and 10 superfamilies, and sampled from 36 countries, representing all continents excluding Antarctica. RESULTS: Approximately a quarter to a third of individuals appear to be infected with Wolbachia, and around 80 % of Lepidoptera species are infected at a non-negligible frequency. This incidence estimate is very high compared to arthropods in general. Wolbachia infection in Lepidoptera is shown to vary between families, but there is no evidence for closely related groups to show similar infection levels. True butterflies (Papilionoidea) are overrepresented in our data, however, our estimates show this group can be taken as a representative for the other major lepidopteran superfamilies. We also show substantial variation in infection level according to geography - closer locations tend to show similar infection levels. We further show that variation in geography is due to a latitudinal gradient in Wolbachia infection, with lower frequencies towards higher latitudes. CONCLUSIONS: Our comprehensive survey of Wolbachia infection in Lepidoptera suggests that infection incidence is very high, and provides evidence that climate and geography are strong predictors of infection frequency.We thank the McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History for their continued support. This study was supported by the University of Florida Research Opportunity Seed Fund (ROSF) and the National Science Foundation grant number DEB-1354585 to AYK.This is the final published version. It first appeared at http://link.springer.com/article/10.1186%2Fs12983-015-0107-z

    Book review [Fauna d’Italia, Orthoptera, Vol. 48]

    No full text
    • …
    corecore