5,284 research outputs found
Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems
One of the major challenges in the Bayesian solution of inverse problems
governed by partial differential equations (PDEs) is the computational cost of
repeatedly evaluating numerical PDE models, as required by Markov chain Monte
Carlo (MCMC) methods for posterior sampling. This paper proposes a data-driven
projection-based model reduction technique to reduce this computational cost.
The proposed technique has two distinctive features. First, the model reduction
strategy is tailored to inverse problems: the snapshots used to construct the
reduced-order model are computed adaptively from the posterior distribution.
Posterior exploration and model reduction are thus pursued simultaneously.
Second, to avoid repeated evaluations of the full-scale numerical model as in a
standard MCMC method, we couple the full-scale model and the reduced-order
model together in the MCMC algorithm. This maintains accurate inference while
reducing its overall computational cost. In numerical experiments considering
steady-state flow in a porous medium, the data-driven reduced-order model
achieves better accuracy than a reduced-order model constructed using the
classical approach. It also improves posterior sampling efficiency by several
orders of magnitude compared to a standard MCMC method
Eigenvalue problems for a three-point boundary-value problem on a time scale
Let be a time scale such that . We us a cone theoretic fixed point theorem to obtain intervals for for which the second order dynamic equation on a time scale,
\begin{gather*}
u^{\Delta\nabla}(t) + \lambda a(t)f(u(t)) = 0, \quad t \in (0,T) \cap \mathbb{T},\\
u(0) = 0, \quad \alpha u(\eta) = u(T),
\end{gather*}
where , and , has a positive solution
Flexible body dynamic stability for high performance aircraft
Dynamic equations which include the effects of unsteady aerodynamic forces and a flexible body structure were developed for a free flying high performance fighter aircraft. The linear and angular deformations are assumed to be small in the body reference frame, allowing the equations to be linearized in the deformation variables. Equations for total body dynamics and flexible body dynamics are formulated using the hybrid coordinate method and integrated in a state space format. A detailed finite element model of a generic high performance fighter aircraft is used to generate the mass and stiffness matrices. Unsteady aerodynamics are represented by a rational function approximation of the doublet lattice matrices. The equations simplify for the case of constant angular rate of the body reference frame, allowing the effect of roll rate to be studied by computing the eigenvalues of the system. It is found that the rigid body modes of the aircraft are greatly affected by introducing a constant roll rate, while the effect on the flexible modes is minimal for this configuration
The contingent factors that affect the use of performance measurement systems in the Egyptian medium and large sized manufacturing companies
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Detection of Lead in the Carbon-Rich, Very Metal-Poor Star LP625-44: A Strong Constraint on s-Process Nucleosynthesis at Low Metallicity
We report the detection of the Pb I 4057.8A line in the very metal-poor
([Fe/H]=-2.7), carbon-rich star, LP625-44. We determine the abundance of Pb
([Pb/Fe] = 2.65) and 15 other neutron-capture elements. The abundance pattern
between Ba and Pb agrees well with a scaled solar system s-process component,
while the lighter elements (Sr-Zr) are less abundant than Ba. The enhancement
of s-process elements is interpreted as a result of mass transfer in a binary
system from a previous AGB companion, an interpretation strongly supported by
radial velocity variations of this system.
The detection of Pb makes it possible, for the first time, to compare model
predictions of s-process nucleosynthesis in AGB stars with observations of
elements between Sr and Pb. The Pb abundance is significantly lower than the
prediction of recent models (e.g., Gallino et al. 1998), which succeeded in
explaining the metallicity dependence of the abundance ratios of light
s-elements (Sr-Zr) to heavy ones (Ba-Dy) found in previously observed
s-process-enhanced stars. This suggests that one should either (a) reconsider
the underlying assumptions concerning the 13C-rich s-processing site
(13C-pocket) in the present models, or (b) investigate alternative sites of
s-process nucleosynthesis in very metal-poor AGB stars.Comment: 10 pages, 3 figures, Astrophysical Journal Letters, in pres
- …