993 research outputs found

    Interpersonal Neural Entrainment during Early Social Interaction

    Get PDF
    Currently, we understand much about how children’s brains attend to and learn from information presented while they are alone, viewing a screen – but less about how interpersonal social influences are substantiated in the brain. Here, we consider research that examines how social behaviors affect not one, but both partners in a dyad. We review studies that measured interpersonal neural entrainment during early social interaction, considering two ways of measuring entrainment: concurrent entrainment (e.g., ‘when A is high, B is high’ – also known as synchrony) and sequential entrainment (‘changes in A forward-predict changes in B’). We discuss possible causes of interpersonal neural entrainment, and consider whether it is merely an epiphenomenon, or whether it plays an independent, mechanistic role in early attention and learning

    Stakeholder perceptions on the role of internal audit in risk management : a mining industry perspective

    Get PDF
    Organisations are faced with risks that can hinder them from meeting their objectives: these risks are both expected and unexpected and could include ‘black swans’. The internal audit function assists management by providing assurance regarding the effectiveness of its risk management processes. By applying a risk-based audit approach internal auditors could enhance the risk management process. However, the literature indicates that the internal audit function may not be playing the role in risk management that its stakeholders require. Interviews were conducted with four groups of stakeholders in the risk management process in the mining industry to identify the expected role of internal audit. The research found that internal audit was performing in line with expectations, but must in future play a bigger role in determining the organisation’s strategic direction by challenging risk identification and assumptions, thereby promoting sustainability. This requires enhancing their technical skills in understanding operational risks specific to mining.http://reference.sabinet.co.za/sa_epublication/sajaaram201

    Sib-mating does not lead to facultative sex ratio adjustment in the parasitoid wasp, Nasonia vitripennis

    Get PDF
    Sex ratio theory predicts that in haplodiploid species, females should lay a relatively more female-biased offspring sex ratio when they mate with a sibling compared with when they mate with a non-relative. This is because in haplodiploids, inbreeding leads to females having greater relatedness to daughters relative to sons. This prediction has only been tested in the parasitoid waspNasonia vitripennis, where no support for this prediction was found. However, a limitation of this previous work is that it was carried out with only two females laying eggs per patch. This is a problem, because in this case the predicted difference in the offspring sex ratio is small and therefore hard to detect. We addressed this problem by utilizing a situation in which larger sex ratio differences are predicted – five females laying eggs per patch. Consistent with the previous results, we also found that the offspring sex ratio laid by a female was not influenced by whether she mated with a sibling or non-relative. Meta-analysis of all the experiments we have undertaken confirms this pattern. This failure to respond to the identity of a mating partner suggests females are unable to discriminate kin and is a relatively rare example of maladaptive sex allocation

    Automatic classification of ICA components from infant EEG using MARA.

    Get PDF
    Automated systems for identifying and removing non-neural ICA components are growing in popularity among EEG researchers of adult populations. Infant EEG data differs in many ways from adult EEG data, but there exists almost no specific system for automated classification of source components from paediatric populations. Here, we adapt one of the most popular systems for adult ICA component classification for use with infant EEG data. Our adapted classifier significantly outperformed the original adult classifier on samples of naturalistic free play EEG data recorded from 10 to 12-month-old infants, achieving agreement rates with the manual classification of over 75% across two validation studies (n = 44, n = 25). Additionally, we examined both classifiers' ability to remove stereotyped ocular artifact from a basic visual processing ERP dataset compared to manual ICA data cleaning. Here, the new classifier performed on level with expert manual cleaning and was again significantly better than the adult classifier at removing artifact whilst retaining a greater amount of genuine neural signal operationalised through comparing ERP activations in time and space. Our new system (iMARA) offers developmental EEG researchers a flexible tool for automatic identification and removal of artifactual ICA components

    Chernobyl-level radiation exposure damages bumblebee reproduction: a laboratory experiment

    Get PDF
    The consequences for wildlife of living in radiologically contaminated environments are uncertain. Previous laboratory studies suggest insects are relatively radiation-resistant; however, some field studies from the Chernobyl Exclusion Zone report severe adverse effects at substantially lower radiation dose rates than expected. Here we present the first laboratory investigation to study how environmentally-relevant radiation exposure affects bumblebee life-history, assessing the shape of the relationship between radiation exposure and fitness-loss. Dose rates comparable to the Chernobyl Exclusion Zone (50-400 µGy h-1) impaired bumblebee reproduction and delayed colony growth but did not affect colony weight or longevity. Our best-fitting model for the effect of radiation dose rate on colony queen production had a strongly non-linear concave relationship: exposure to only 100 µGy h-1 impaired reproduction by 30-45%, while further dose rate increases caused more modest additional reproductive impairment. Our data indicate that the practice of estimating effects of environmentally-relevant low dose rate exposure by extrapolating from high dose rates may have considerably underestimated the effects of radiation. If our data can be generalised, they suggest insects suffer significant negative consequences at dose rates previously thought safe; we therefore advocate relevant revisions to the international framework for radiological protection of the environment

    Chytrid epidemics may increase genetic diversity of a diatom spring-bloom

    Get PDF
    Contrary to expectation, populations of clonal organisms are often genetically highly diverse. In phytoplankton, this diversity is maintained throughout periods of high population growth (that is, blooms), even though competitive exclusion among genotypes should hypothetically lead to the dominance of a few superior genotypes. Genotype-specific parasitism may be one mechanism that helps maintain such high-genotypic diversity of clonal organisms. Here, we present a comparison of population genetic similarity by estimating the beta-dispersion among genotypes of early and peak bloom populations of the diatom Asterionella formosa for three spring-blooms under high or low parasite pressure. The Asterionella population showed greater beta-dispersion at peak bloom than early bloom in the 2 years with high parasite pressure, whereas the within group dispersion did not change under low parasite pressure. Our findings support that high prevalence parasitism can promote genetic diversification of natural populations of clonal hosts

    Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data

    Get PDF
    We present a measurement of the BB-mode polarization power spectrum (the BBBB spectrum) from 100 deg2\mathrm{deg}^2 of sky observed with SPTpol, a polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work were taken during 2012 and early 2013 and include data in spectral bands centered at 95 and 150 GHz. We report the BBBB spectrum in five bins in multipole space, spanning the range 300≤ℓ≤2300300 \le \ell \le 2300, and for three spectral combinations: 95 GHz ×\times 95 GHz, 95 GHz ×\times 150 GHz, and 150 GHz ×\times 150 GHz. We subtract small (<0.5σ< 0.5 \sigma in units of statistical uncertainty) biases from these spectra and account for the uncertainty in those biases. The resulting power spectra are inconsistent with zero power but consistent with predictions for the BBBB spectrum arising from the gravitational lensing of EE-mode polarization. If we assume no other source of BBBB power besides lensed BB modes, we determine a preference for lensed BB modes of 4.9σ4.9 \sigma. After marginalizing over tensor power and foregrounds, namely polarized emission from galactic dust and extragalactic sources, this significance is 4.3σ4.3 \sigma. Fitting for a single parameter, AlensA_\mathrm{lens}, that multiplies the predicted lensed BB-mode spectrum, and marginalizing over tensor power and foregrounds, we find Alens=1.08±0.26A_\mathrm{lens} = 1.08 \pm 0.26, indicating that our measured spectra are consistent with the signal expected from gravitational lensing. The data presented here provide the best measurement to date of the BB-mode power spectrum on these angular scales.Comment: 21 pages, 4 figure

    A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data

    Get PDF
    We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 deg2^2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between 100<L<250100< L <250. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between 100<L<2000100< L <2000 as our primary result. We constrain the ratio of the spectrum to a fiducial Λ\LambdaCDM model to be AMV=0.92±0.14 (Stat.)±0.08 (Sys.)A_{\rm MV}=0.92 \pm 0.14 {\rm\, (Stat.)} \pm 0.08 {\rm\, (Sys.)}. Restricting ourselves to polarized data only, we find APOL=0.92±0.24 (Stat.)±0.11 (Sys.)A_{\rm POL}=0.92 \pm 0.24 {\rm\, (Stat.)} \pm 0.11 {\rm\, (Sys.)}. This measurement rejects the hypothesis of no lensing at 5.9σ5.9 \sigma using polarization data alone, and at 14σ14 \sigma using both temperature and polarization data.Comment: 16 pages, 8 figure

    CMB Polarization B-mode Delensing with SPTpol and Herschel

    Full text link
    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg2^2 patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the Herschel\textit{Herschel} 500 μm500\,\mu m map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range 300<ℓ<2300300 < \ell < 2300; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at 6.9σ6.9 \sigma. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome

    Measurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

    Get PDF
    We present measurements of the EE-mode polarization angular auto-power spectrum (EEEE) and temperature-EE-mode cross-power spectrum (TETE) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range 50<ℓ≤800050 < \ell \leq 8000, and detect nine acoustic peaks in the EEEE spectrum with high signal-to-noise ratio. These measurements are the most sensitive to date of the EEEE and TETE power spectra at ℓ>1050\ell > 1050 and ℓ>1475\ell > 1475, respectively. The observations cover 500 deg2^2, a fivefold increase in area compared to previous SPTpol analyses, which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on \LCDM model extensions. After masking all sources with unpolarized flux >50>50 mJy we place a 95% confidence upper limit on residual polarized point-source power of Dℓ=ℓ(ℓ+1)Cℓ/2π<0.107 μK2D_\ell = \ell(\ell+1)C_\ell/2\pi <0.107\,\mu{\rm K}^2 at ℓ=3000\ell=3000, suggesting that the EEEE damping tail dominates foregrounds to at least ℓ=4050\ell = 4050 with modest source masking. We find that the SPTpol dataset is in mild tension with the ΛCDM\Lambda CDM model (2.1 σ2.1\,\sigma), and different data splits prefer parameter values that differ at the ∼1 σ\sim 1\,\sigma level. When fitting SPTpol data at ℓ<1000\ell < 1000 we find cosmological parameter constraints consistent with those for PlanckPlanck temperature. Including SPTpol data at ℓ>1000\ell > 1000 results in a preference for a higher value of the expansion rate (H_0 = 71.3 \pm 2.1\,\mbox{km}\,s^{-1}\mbox{Mpc}^{-1} ) and a lower value for present-day density fluctuations (σ8=0.77±0.02\sigma_8 = 0.77 \pm 0.02).Comment: Updated to match version accepted to ApJ. 34 pages, 17 figures, 6 table
    • …
    corecore