89 research outputs found

    A Polyadenylation Factor Subunit Implicated in Regulating Oxidative Signaling in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS: The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE: These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress

    Species-Specific Expansion and Molecular Evolution of the 3-hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Plants

    Get PDF
    Kazakh dandelion (Taraxacum kok-saghyz, Tk) is a rubber-producing plant currently being investigated as a source of natural rubber for industrial applications. Like many other isoprenoids, rubber is a downstream product of the mevalonate pathway. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the conversion of 3-hydroxy-3-methylglutaryl-CoA to mevalonic acid, a key regulatory step in the MVA pathway. Such regulated steps provide targets for increases in isoprenoid and rubber contents via genetic engineering to increase enzyme activities. In this study, we identify a TkHMGR1 gene that is highly expressed in the roots of Kazakh dandelion, the main tissue where rubber is synthesized and stored. This finding paves the way for further molecular and genetic studies of the TkHMGR1 gene, and its role in rubber biosynthesis in Tk and other rubber-producing plants

    Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Citrus canker disease caused by the bacterial pathogen <it>Xanthomonas citri </it>subsp. <it>citri (</it>Xcc) <it>has </it>become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative <it>Fortunella margarita </it>Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in <it>Fortunella </it>and citrus at the molecular level.</p> <p>Results</p> <p><b>cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray</b>. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus.</p> <p>Conclusion</p> <p>Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.</p

    Circadian regulation of hormone signaling and plant physiology

    Full text link
    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways

    Agricultural uses of plant biostimulants

    Get PDF

    Signal transduction during oxidative stress

    No full text
    • 

    corecore