9,720 research outputs found

    Electrochemical behaviour of cytochrome c at low potentials

    Get PDF
    d.c. polarograms of bovine heart cytochrome c show reduction currents at low potentials. This is observed in buffer solutions with pH values between 1 and 10.5. These currents are attributed to catalytic hydrogen formation (pre-sodium currents). After succinylation of the protein, the current in glycine-NaOH buffer of pH 10.5 disappears almost completely, whereas that in acetate buffer of pH 4.5 is affected only slightly. It is concluded that different groups are responsible for the currents observed in these two buffer

    Normal stresses in semiflexible polymer hydrogels

    Get PDF
    Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As recently shown, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semi-flexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.Comment: 12 pages, 8 figure

    DYNAMIC ELUTRIATION MEASUREMENT IN A CONTINUOUSLY OPERATED BUBBLING FLUIDIZED BED

    Get PDF
    Measurements were performed using a novel thermal mass flow meter. The dynamic behaviour of the total elutriation rate was monitored from start-up until a steady rate was achieved. It was found that the elutriation rate at unsteady conditions can be as much as 5 times that of the steady value and that it can take more than an hour to reach steady state. This is attributed to the dynamic changes of the fines distribution between the fluidized bed and dipleg. It was further shown that a steady dipleg height does not indicate steady elutriation rates. Using the flow meter to confirm steady state measurements, elutriation constants were determined for the glass bead - air system at different superficial velocities

    Age-related microvascular degeneration in the human cerebral periventricular white matter

    Get PDF
    Clinical studies have identified white matter (WM) lesions as hyperintensive regions in the MRI images of elderly patients. Since a cerebrovascular origin was attributed to such lesions, the present analysis set out to define the microvascular histopathologic changes in the periventricular WM in the aged. Post-mortem samples of the frontal, parietal, and occipital periventricular WM of 40-90-year-old subjects were prepared for quantitative light and electron microscopy. Light microscopic examination revealed microvascular fibrohyalinosis as the most common type of microvascular damage in the elderly. Ultrastructural analysis identified the microvascular thickening as collagen deposits affecting the basement membrane. The vascular density did not correlate with the age. The basement membrane pathology significantly increased, while the number of intact microvessels gradually decreased, with advancing age in the frontal and occipital WM. Finally, peripheral atherosclerosis coincided with massive microvascular fibrosis, particularly in the frontal WM. Our results demonstrate an age-related microvascular degeneration in the periventricular WM, which may contribute to the development of WM lesions by hindering a sufficient supply of nutrients to the affected WM sites. Furthermore, the data accord with previous observations identifying the frontal lobe as the site at which WM vulnerability is most pronounced. Finally, atherosclerosis in large, peripheral vessels is considered to be a predictive marker of microvascular pathology in the WM.</p
    corecore