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Abstract By systematically inflating the group ofn×n permutation matrices to the
group ofn×n unitary matrices, we can see how classical computing is embedded in
quantum computing. In this proces, an important role is played by two subgroups of
the unitary group U(n), i.e. XU(n) and ZU(n). Here, XU(n) consists of alln×n uni-
tary matrices with all line sums (i.e. then row sums and then column sums) equal
to 1, whereas ZU(n) consists of alln× n diagonal unitary matrices with upper-left
entry equal to 1. As a consequence, quantum computers can be built from NEGATOR
gates andPHASOR gates. TheNEGATOR is a 1-qubit circuit that is a natural gener-
alization of the 1-bitNOT gate of classical computing. In contrast, thePHASOR is a
1-qubit circuit not related to classical computing.

1 Introduction

Often, in the literature, conventional computers and quantum computers are dis-
cussed like belonging to two separate worlds, far from each other. Conventional
computers act on classical bits, say ‘pure zeroes’ and ‘pureones’, by means of
Boolean logic gates, such asAND gates andNOR gates. The operations performed
by these gates are described by truth tables. Quantum computers act on qubits, say
complex vectors, by means of quantum gates, such asROTATOR gates andT gates
[1]. The operations performed by these gates are described by unitary matrices.

Because the world of classical computation and the world of quantum computa-
tion are based on such different science models, it is difficult to see the relationship
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(be it analogies or differences) between these two computation paradigms. In the
present chapter, we bridge the gap between the two sciences.For this purpose, a
common language is necessary. The common tool we have chosenis the represen-
tation by square matrices and the construction of matrix groups.

2 Reversible computing

The first step in bridging the gap between classical and quantum computation is re-
placing (or better: embedding) conventional classical computing in reversible clas-
sical computing. Whereas conventional logic gates are represented by truth tables
with an arbitrary numberwi of input columns and an arbitrary numberwo of output
columns, reversible logic gates are described by truth tables with an equal numberw
of input and output columns. Moreover, all output rows are different, such that the
2w output words are merely a permutation of the 2w input words [2] [3] [4] [5].
Table 1 gives an example of a conventional gate (i.e. anAND gate, with two input
bits A andB and one output bitR), as well as an example of a reversible gate (i.e.
aTOFFOLI gate, a.k.a. a controlled controlledNOT gate, with three input bitsA, B,
andC and three output bitsP, Q, andR). The reader may verify that the irreversible
AND function is embedded in the reversibleTOFFOLI function, as presetting in
Table 1b the inputC to logic 0 leads to the outputR being equal toA AND B, as
is highlighted by boldface. In the general case, any irreversible truth table can be
embedded in a reversible truth table withw = wi +wo or less bits [6].

Table 1 Truth table of two basic Boolean functions: (a) theAND function, (b) theTOFFOLI func-
tion.

AB R

0 0 0
0 1 0
1 0 0
1 1 1

(a)

ABC PQR

0 0 0 0 00
0 0 1 0 0 1
0 1 0 0 10
0 1 1 0 1 1
1 0 0 1 00
1 0 1 1 0 1
1 1 0 1 11
1 1 1 1 1 0

(b)

The next step in the journey from the conventional to the quantum world, is re-
placing the reversible truth table by a permutation matrix.As all eight output words
000, 001, ..., and 110 are merely a permutation of the eight input words 000, 001,
..., and 111, Table 1(b) can be replaced by an 8×8 permutation matrix, i.e.
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























.

An arbitrary classical reversible circuit, acting onw bits, is represented by a per-
mutation matrix of size 2w×2w. In contrast, a quantum circuit, acting onw qubits, is
represented by a unitary matrix of size 2w ×2w. Both kind of matrices are depicted
by symbols withw input lines andw output lines:

U

.

Invertible square matrices, together with the operation ofordinary matrix multipli-
cation, form a group. The finite matrix group P(2w) consisting solely of permutation
matrices is a subgroup of the continuous group U(2w) of unitary matrices. In the
present chapter, we show a natural means how to enlarge the subgroup to its super-
group, in other words: how to upgrade a classical computer toa quantum computer.

3 NEGATORs and PHASORs

For the purpose of upgrading the permutation group P(n) to the unitary group U(n),
we introduce two subgroups [7] [8] [9] of U(n):

the subgroup XU(n)
consists of alln× n unitary matrices with all line sums (i.e. then row sums
and then column sums) equal to 1

and

the subgroup ZU(n)
consists of alln×n diagonal unitary matrices with upper-left entry equal to 1.

Whereas U(n) is ann2-dimensional Lie group, XU(n) is only(n−1)2-dimensional
and ZU(n) is only (n−1)-dimensional. The two subgroups are quite distinct: their
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Fig. 1 Venn diagram of the
Lie groups U(n), XU(n), and
ZU(n) and the finite groups
P(n) and1(n).
Note: the trivial group1(n) is
represented by the bullet.
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intersection is the trivial group1(n), consisting of a single matrix, i.e. then×n unit
matrix. We note that all P(n) matrices are in XU(n). See Venn diagram in Figure 1.

Why exactly these two groups? The reason becomes clear by looking at the case
n = 2. There exist only two classical reversible circuits acting on a single bit. They
are represented by the two P(2) matrices:

(

1 0
0 1

)

for theIDENTITY gate and
(

0 1
1 0

)

for theNOT gate. The latter is also known as theX gate. In contrast, there exists a
4-dimensional infinity of quantum circuits acting on a single qubit. They are repre-
sented by the U(2) matrices.

In order to upgrade the group P(2), we construct a unitary interpolation between
its two permutation matrices. The interpolation

(1− t)

(

1 0
0 1

)

+ t

(

0 1
1 0

)

is unitary if and only ift = (1+eiθ )/2, whereθ is an arbitrary angle. We thus obtain
a 1-dimensional generalization of theNOT matrix:

the NEGATOR gate:

N(θ) =
1
2

(

1+ eiθ 1− eiθ

1− eiθ 1+ eiθ

)

,

whereθ is an arbitrary angle.

Because U(2) is 4-dimensional, we need some extra building block to generate
the full U(2). For this purpose, it suffices to introduce a second 1-dimensional sub-
group of U(2):
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the PHASOR gate:

Φ(θ) =

(

1 0
0 eiθ

)

,

whereθ is an arbitrary angle.

Analogously as theNEGATOR is the 1-dimensional generalization of the
(

1
1

)

matrix orX gate, thePHASOR can be considered as the 1-dimensional generalization
of the

(

1
−1

)

matrix, a.k.a. theZ gate. The two 1-dimensional subgroups XU(2) and
ZU(2) suffice to generate the whole 4-dimensional group U(2). We say: the closure
of XU(2) and ZU(2) is U(2). Indeed, an arbitrary matrixU from U(2) can be written
as a finite product of matrices from XU(2) and matrices from ZU(2):

U(α,ϕ,ψ,χ) = eiα

(

cos(ϕ)eiψ sin(ϕ)eiχ

−sin(ϕ)e−iχ cos(ϕ)e−iψ

)

= N(π)Φ(α +ϕ +ψ)N(π)Φ(α +ϕ −χ +π/2)N(ϕ)Φ(−ψ + χ −π/2) .

We use the following symbols for theNEGATOR andPHASOR gates:

N(θ) and Φ(θ) ,

respectively. In the literature [5] [10] [11] [12], some of these gates have a specific
notation:

N(0) = I

N(π/4) = W

N(π/2) = V

N(π) = X

N(2π) = I

Φ(0) = I

Φ(π/4) = T

Φ(π/2) = S

Φ(π) = Z

Φ(2π) = I .

In particular, theV gate is known as ‘the square root ofNOT’ [13] [14] [15] [16].
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4 Controlled NEGATORs and controlled PHASORs

Two-qubit circuits are represented by matrices from U(4). We may apply either the
NEGATOR gate or thePHASOR gate from the previous section to either the first qubit
or the second qubit. Here are two examples:

Φ(θ)

N(θ) and ,

i.e. aNEGATOR acting on the second qubit and aPHASOR acting on the first qubit,
respectively. These circuits are represented by the 4×4 unitary matrices

1
2









1+ eiθ 1− eiθ 0 0
1− eiθ 1+ eiθ 0 0

0 0 1+ eiθ 1− eiθ

0 0 1− eiθ 1+ eiθ









and









1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ









, (1)

respectively.
However, we also introduce more sophisticated gates: the so-called ‘controlled

PHASORs’ and ‘controlledNEGATORs’. Two examples are

N(θ)

• and Φ(θ) ,

i.e. a positive-polarity controlledNEGATOR acting on the first qubit, controlled by
the second qubit, and a negative-polarity controlledPHASOR acting on the second
qubit, controlled by the first qubit, respectively. The former symbol is read as fol-
lows: ‘if the second qubit equals 1, then theNEGATOR acts on the first qubit; if,
however, the second qubit equals 0, then theNEGATOR is inactive, i.e. the first
qubit undergoes no change’. The latter symbol is read as follows: ‘if the first qubit
equals 0, then thePHASOR acts on the second qubit; if, however, the first qubit
equals 1, then thePHASOR is inactive, i.e. the second qubit undergoes no change’.
The 4×4 matrices representing these two circuit examples are:









1 0 0 0
0 1

2 (1+ eiθ ) 0 1
2 (1− eiθ )

0 0 1 0
0 1

2 (1− eiθ ) 0 1
2 (1+ eiθ )









and









1 0 0 0
0 eiθ 0 0
0 0 1 0
0 0 0 1









, (2)

respectively.
We now give two examples of a 3-qubit circuit:
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N(θ) •
• and

• Φ(θ) ,

i.e. a positive-polarity controlledNEGATOR acting on the first qubit and a mixed-
polarity controlledPHASOR acting on the third qubit. The 8×8 matrices represent-
ing these two circuit examples are:

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1

2 (1+ eiθ ) 0 0 0 1
2 (1− eiθ )

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1

2 (1− eiθ ) 0 0 0 1
2 (1+ eiθ )

























and

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0eiθ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























, (3)

respectively. In each of the expressions (1), (2), and (3), we note the following prop-
erties:

• the former matrix has all row sums and all column sums equal to1;
• the latter matrix is diagonal and has upper-left entry equalto 1.

Because the multiplication of two square matrices with all line sums equal to 1
automatically yields a third square matrix with all line sums equal to 1, we can easily
demonstrate that an arbitrary quantum circuit like

•
• •

• • ,

consisting merely of uncontrolledNEGATORs and controlledNEGATORs is repre-
sented by a 2w × 2w unitary matrix with all line sums equal to 1, i.e. an XU(2w)
matrix. A laborious proof [17] demonstrates that the converse theorem is also
valid: any member of XU(2w) can be synthesized by an appropriate finite string
of (un)controlledNEGATORs.

Because the multiplication of two diagonal square matricesyields a third diago-
nal square matrix and because the multiplication of two unitary matrices with first
entry equal to 1 yields a third unitary matrix with first entryequal to 1, we can easily
demonstrate that an arbitrary quantum circuit like

•
• •

• • ,

consisting merely of uncontrolledPHASORs and controlledPHASORs is represented
by a 2w×2w unitary diagonal matrix with first entry equal to 1, i.e. a ZU(2w) matrix.
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It can easily be seen that the converse theorem is also true: any member of ZU(2w)
can be synthesized by an appropriate finite string of (un)controlledPHASORs.

We conclude that the study ofNEGATOR andPHASOR circuits automatically
leads to the introduction of the two subgroups XU(2w) and ZU(2w) of the unitary
group U(2w).

5 The FUF matrix decomposition

While studying the properties of the XU and ZU groups, a pivotal role is played by
then×n discrete Fourier transform, i.e. the following unitary matrix:

F =
1√
n















1 1 1 1 ... 1
1 ω ω2 ω3 ... ωn−1

1 ω2 ω4 ω6 ... ω2(n−1)

...
1 ωn−1 ω2(n−1) ω3(n−1) ... ω(n−1)(n−1)















,

whereω is the primitiven th root of unity, i.e.ei2π/n. We have:

the FUF theorem:
Any matrix X from XU(n) can be written as the following product [17]:

X = F

(

1
U

)

F−1 ,

where

• F is then×n discrete Fourier transform and
• U is a matrix from U(n−1).

The proof is constructive, i.e. by computation of the matrixproduct, taking into
account the properties of the Fourier matrix. The relationship is a one-to-one map-
ping. In other words: with oneX corresponds oneU and with oneU corresponds
oneX . As a result, the group XU(n) is isomorphic to the unitary group U(n−1) and
thus has(n−1)2 dimensions. Here is an example from U(2) and XU(3):

1√
3





1 1 1
1 ω ω2

1 ω2 ω





1
2





2 0 0
0 −1+ i 1+ i
0 1− i 1+ i





1√
3





1 1 1
1 ω2 ω
1 ω ω2
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=
1
6







4+2i −(
√

3−1)+ i(
√

3−1)
√

3+1− i(
√

3+1)

−(
√

3−1)− i(
√

3+1)
√

3+1+2i 4+ i(
√

3−1)√
3+1+ i(

√
3−1) 4− i(

√
3+1) −(

√
3−1)+2i






,

whereω is the primitive cubic root of unity, i.e.ω = ei2π/3 = −1
2 + i

√
3

2 .
We have two special cases of theFUF theorem. The first involves a subgroup of

XU(n):

the subgroup CXU(n)
consists of all circulant XU(n) matrices.

For such matrices holds

the FZF theorem:
Any matrixC from CXU(n) can be written as follows:

C = FZF−1 ,

where

• F is then×n discrete Fourier transform and
• Z is a matrix from ZU(n).

Similarly, we can write any ZU(n) as anFCF−1 product. These two relationships
constitute a one-to-one mapping between ZU(n) and CXU(n). The two (n − 1)-
dimensional groups thus are isomorphic. An example for CXU(4) and ZU(4) is

1
8









1+ i 7+ i −1− i 1− i
1− i 1+ i 7+ i −1− i

−1− i 1− i 1+ i 7+ i
7+ i −1− i 1− i 1+ i









=

1
2









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

















1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 (1− i)/2









1
2









1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i









.

The second special case of theFUF theorem is
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the FXF theorem:
For any matrixX from XU(n), the following property holds:

F

(

1
X

)

F−1 =

(

1
X ′

)

,

where

• F is the(n+1)× (n+1) discrete Fourier transform and
• X ′ is a matrix from XU(n).

Proof of this theorem is quite simple. Suffice it to note two facts:

• F
(

1
χ

)

is a matrix with an upper row consisting ofn + 1 entries all equal to
1/
√

n+1, such thatF
(

1
χ

)

F−1 is a matrix with an upper-left entry equal to 1;
• F

(

1
χ

)

F−1 is of the formF
(

1
U

)

F−1, and therefore an XU(n + 1) matrix, by
virtue of theFUF theorem.

A matrix with these two properties is necessarily of the form
(

1
X ′
)

with X ′ a mem-
ber of XU(n).

For n = 2, the matrixX ′ is equal to the matrixX . For n > 2, usually, the matrix
X ′ is different fromX . The relationship thus is a one-to-one mapping from XU(n)
to itself. We give an example from XU(3):

1
2









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









1
2









2 0 0 0
0 1 i 1− i
0 −i 1 1+ i
0 1+ i 1− i 0









1
2









1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i









=

1
4









4 0 0 0
0 3 −1− i 2+ i
0 −1+ i 2 3− i
0 2− i 3+ i −1









.

Note that here the Fourier matrices are of larger size than the XU matrices. A rela-
tionship likeFXF−1 = X ′ with F , X , andX ′ of the same size does not hold.

6 The ZXZ matrix decomposition

A quite different theorem is
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the ZXZ theorem:
Any matrixU from U(n) can be written as follows [18] [19]:

U = aZ1XZ2 , (4)

where

• a is a member of U(1), i.e. a complex number with unit modulus,
• X is a member of XU(n), and
• bothZ1 andZ2 are member of ZU(n).

The proof of the theorem is non-constructive and based on symplectic topology
[19]. We note that the sum of 1 (number of parameters ina), n− 1 (parameters
in Z1), (n−1)2 (in X) andn−1 (in Z2) equals the dimensionalityn2 of U(n):

1+(n−1)+(n−1)2 +(n−1) = n2 .

Thus the number of degrees of freedom inaZ1XZ2 exactly matches the number
of degrees of freedom inU . This might suggest that the decomposition is unique.
However, this is not true: unlike theFUF theorem, theZXZ theorem is not a one-to-
one relationship. As an example, we give here the same matrixfrom U(2) as in the
illustration of theFUF theorem. It has two (and only two)ZXZ decompositions:

1
2

(

−1+ i 1+ i
1− i 1+ i

)

= (−1)

(

1 0
0 i

)

1
2

(

1− i 1+ i
1+ i 1− i

)(

1 0
0 −1

)

= i

(

1 0
0 −i

)

1
2

(

1+ i 1− i
1− i 1+ i

)(

1 0
0 1

)

.

Usually a U(n) matrix has a discrete number of decompositions. But sometimes
there are as many as a noncountable infinity of decompositions, as is illustrated by
another U(2) matrix:

(

0 −i
i 0

)

= eiβ
(

1 0
0 ie−iβ

)(

0 1
1 0

)(

1 0
0 −ie−iβ

)

,

where the angleβ is allowed to have any value.
Except in some special cases, no analytical method is known to find theZXZ

decompositons ofU . Only a numerical procedure is known. It yields one of the
solutions with an arbitrarily small error. Which solution isfound, depends on the
starting conditions of the numerical algorithm [18].

We thus can conclude that any quantum computer looks like
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Z2 X Z1 eiα

,

i.e. the cascade of an overall phase factor, an input sectionconsisting merely
of (un)controlledPHASORs, a core section consisting merely of (un)controlled
NEGATORs, and an output section consisting merely of (un)controlled PHASORs.

By combining theFUF , the ZXZ, the FZF , and theFXF theorems, we can
prove the following decomposition of an XU(n) matrix:

the CXC theorem:
For any matrixX from XU(n), the following property holds:

X = C′
(

1
X ′

)

C′′ , (5)

where

• X ′ is a member of XU(n−1) and
• bothC′ andC′′ are member of CXU(n).

Indeed:

X = F

(

1
U

)

F−1 = F

(

1
aZ′X ′′Z′′

)

F−1 = F

(

1
aZ′

)(

1
X ′′

)(

1
Z′′

)

F−1

= F

(

1
aZ′

)

F−1F

(

1
X ′′

)

F−1F

(

1
Z′′

)

F−1 = C′
(

1
X ′

)

C′′ .

Because theZXZ decomposition is not unique, also theCXC decomposition is not
unique.

By applying theCXC theorem again and again, we find the following decompo-
sition of an arbitrary elementX of XU(n):

X =C′
n

(

1
C′

n−1

)

...

(

1n−3

C′
3

) (

1n−2

C2

) (

1n−3

C′′
3

)

...

(

1
C′′

n−1

)

C′′
n ,

(6)

where1k is a short-hand notation for thek× k unit matrix, and where allC′
k and all

C′′
k are CXU(k) matrices andC2 is a CXU(2) matrix. We conclude: any matrix from

XU(n) can be decomposed as a product of 2n−2 matrices of the form
(

1n−k
Ck

)

. We
note that a similar reasoning is applicable to permutation matrices, i.e. to classical
computation. See Appendix 1.
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7 The U circuit synthesis

The phase factora = eiα in theZXZ product may be decomposed into twoNEGATOR
circuits and two uncontrolledPHASORs. Indeed, ifn = 2w, thenn is even. Ifn is
even, then we note the following diagonal-matrix property:

diag(a,a,a,a,a, ...,a,a)= P0 diag(1,a,1,a,1, ...,1,a) P−1
0 diag(1,a,1,a,1, ...,1,a) ,

whereP0 is then×n (circulant) permutation matrix











0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
.
.
.
0 0 0 0 ... 0 1
1 0 0 0 ... 0 0











,

a.k.a. the cyclic-shift matrix, which can be implemented with classical reversible
gates (i.e. oneNOT andw−1 controlledNOTs [4] [20]). We thus can rewrite (4) as
a decomposition containing exclusively XU and ZU matrices:

U = P0Z0P−1
0 Z′

1XZ2 ,

whereZ0 = diag(1,a,1,a,1, ...,1,a) is a ZU matrix which can be implemented by a
single (uncontrolled)PHASOR gate and whereZ′

1 is the productZ0Z1:

Z2 X Z′
1 P−1

0 P0

Z0 .

Because bothP0 andP−1
0 belong to XU(n), we conclude that any matrix from U(n)

can be synthesized by a cascade of XU(n) blocks and ZU(n) blocks. In group-
theoretical terms: the closure of XU(n) and ZU(n) is U(n). We note that this circuit
decomposition is not unique, because theZXZ matrix decomposition is not unique.

In the next two sections, we will look in detail to the synthesis of the ZU block
and the XU blocks.

8 The ZU circuit synthesis

The decomposition of an arbitrary member of ZU(n) is straigthforward. Indeed, for
evenn, the matrix can be written as the following product of four matrices:

diag(1,a2,a3,a4,a5,a6, ...,an) =

diag(1,a2,1,a4,1,a6, ...,1,an) P0 diag(1,1,1,a3,1,a5, ...,1,an−1) P−1
0 ,



14 Alexis De Vos and Stijn De Baerdemacker

wherea j is a short-hand notation foreiα j . If n equals 2w, then the diagonal matrix
diag(1,a2,1,a4, 1,a6, ...) represents 2w−1 PHASORs, each controlled(w−1) times,
and the diagonal matrix diag(1,1,1,a3, 1,a5, ...) represents 2w−1 − 1 PHASORs,
each controlled(w−1) times. E.g. forw = 3, we obtain

• • • •
• • • • • •

• • Φ(α7) Φ(α5) Φ(α3) • • Φ(α8) Φ(α6) Φ(α4) Φ(α2) .

We thus have a total of 2w − 1 controlledPHASORs. According to Lemma 7.5 of
Barenco et al. [21], each multiply-controlled gateΦ(α) can be replaced by clas-
sical gates and three singly-controlledPHASORs Φ(±α/2). According to De Vos
and De Baerdemacker [7], each singly-controlledPHASOR Φ(β ) can be decom-
posed into two controlledNOTs and three uncontrolledPHASORs Φ(±β/2). We
thus obtain a circuit with a total of 9(2w −1) uncontrolledPHASORs.

We conclude that any matrix from ZU(n) can be synthesized by a cascade of P(n)
blocks and ZZU(n) blocks. Here, ZZU(n) denotes the 1-dimensional subgroup of
ZU(n) consisting of alln× n diagonal unitary matrices with all diagonal elements
equal to 1, except the lower-right entry. It is isomorphic toZU(2) and thus to U(1).

9 The XU circuit synthesis

Because of (6), the synthesis of an XU circuit is reduced to the synthesis of matrices
consisting of two blocks on the diagonal: a unit submatrix and a CXU submatrix.
We will call such matrices block-circulant, as they are composed of two circulant
blocks.

10 The CXU circuit synthesis

In spite of the fact that CXU(n) is isomorphic to ZU(n), its synthesis is not as
straightforward. The group ZU(n) is isomorphic to U(1)n−1. Therefore, the group
CXU(n) is equally isomorphic to the direct product U(1)n−1. Then−1 generators
of ZU(n) are the matrices

gk =





0k−1

1
0n−k



 ,

where 2≤ k ≤ n and0 j is a short-hand notation for thej × j zero matrix. As an
example, we give here the two generators of ZU(3):
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g2 =





0 0 0
0 1 0
0 0 0



 and g3 =





0 0 0
0 0 0
0 0 1



 .

For each set{ j,k}, we have that the two generatorsg j andgk commute:

[g j,gk] = g jgk −gkg j = 0 .

That is exactly the reason why ZU(n) is a direct product of itsn − 1 subgroups
isomorphic to ZZU(n) and thus to U(1). Each 1-dimensional subgroup is of the
form

mk(θ) =





0k−1

eiθ

0n−k



 .

By Fourier conjugating the ZU(n) generators, we find the CXU(n) generators. They
look like:

gk =
1
n











1 Ω Ω 2 ... Ω n−1

Ω−1 1 Ω ... Ω n−2

...
Ω−n+1 Ω−n+2 Ω−n+3 ... 1











,

whereΩ is a short-hand notation forω1−k. All n−1 generators of CXU(n) equally
commute. Whereas in general a single generatorg generates a 1-dimensional matrix
group given by the matrix eponentiationm(θ) = eigθ , in this particular case (because
of the propertyg2

k = gk), the generated matrices have the simple expression

mk(θ) = 1n +(eiθ −1)gk .

As an example, we give here the two generators of CXU(3):

g2 =
1
3





1 ω2 ω
ω 1 ω2

ω2 ω 1



 and g3 =
1
3





1 ω ω2

ω2 1 ω
ω ω2 1



 .

Each generates a 1-dimensional subgroup of CXU(3):

m2(θ) =
1
3





2+ x ω2(x−1) ω(x−1)
ω(x−1) 2+ x ω2(x−1)
ω2(x−1) ω(x−1) 2+ x



 and

m3(θ) =
1
3





2+ x ω(x−1) ω2(x−1)
ω2(x−1) 2+ x ω(x−1)
ω(x−1) ω2(x−1) 2+ x



 ,

wherex is a short-hand notation foreiθ .
The n × n matricesmk(θ) are a generalization of the 2× 2 NEGATOR N(θ):

they are a unitary interpolation between then× n unit matrix mk(0) and then× n
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generalizedNOTmatrixmk(π) = 1n−2gk. We have only one 2×2 generalizedNOT,
i.e. the classicalNOT:

m2(π) =

(

0 1
1 0

)

;

we have two 3×3 generalizedNOTs:

m2(π) =
1
3





1 −2ω2 −2ω
−2ω 1 −2ω2

−2ω2 −2ω 1



 and m3(π) =
1
3





1 −2ω −2ω2

−2ω2 1 −2ω
−2ω −2ω2 1



 ;

we have three 4×4 generalizedNOTs:

m2(π) =
1
2









1 −i 1 i
i 1 −i 1
1 i 1 −i

−i 1 i 1









, m3(π) =
1
2









1 1 −1 1
1 1 1 −1

−1 1 1 1
1 −1 1 1









, and

m4(π) =
1
2









1 i 1 −i
−i 1 i 1
1 −i 1 i
i 1 −i 1









;

etcetera.
By applying the KAK decomposition [22] [23] of U(3), it is proved in [17] that

any XU circuit can be decomposed into a cascade of

• uncontrolledNEGATORs,
• singly controlledV gates, and
• doubly controlledNOTs.

E.g. the above CXU(3) matrixm3(θ) has the following XU(3) KAK decomposition:

V0(θ0)V3(θ1)V2(θ2)V3(θ3) = V0(θ/2)V3(π −θ/2)V2(π)V3(0)

=
1
3

(

1+2y 1− y 1− y
1− y 1+2y 1− y
1− y 1− y 1+2y

)

1
3

(

1−2c 1+ c+
√

3s 1+ c−
√

3s

1+ c−
√

3s 1−2c 1+ c+
√

3s

1+ c+
√

3s 1+ c−
√

3s 1−2c

)

1
3

(

−1 2 2
2 −1 2
2 2 −1

)

,

where we follow the notationsV0,V1,V2, andV3 of Appendix A of Reference [17]
and wherec ands are short-hand notations for cos(θ/2) and sin(θ/2), respectively,
andy is c + is =

√
x . Subsequently, we can apply to each of these three matrices

the XU(4) KAK decomposition. E.g. the rightmost matrix appears in the 2-qubit
block-circulant matrix

1
3









3 0 0 0
0 −1 2 2
0 2 −1 2
0 2 2 −1









with decomposition
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V0(θ0)V3(θ1)V2(θ2)V3(θ3)V5(θ4)V3(θ5)V2(θ6)V3(θ7)V8(θ8)

= V0(0)V3(0)V2(7π/4)V3(0)V5(ϕ)V3(0)V2(π/4)V3(0)V8(0)

=
1
4









2−
√

2 2+
√

2
√

2 −
√

2
2+

√
2 2−

√
2 −

√
2

√
2

−
√

2
√

2 2−
√

2 2+
√

2√
2 −

√
2 2+

√
2 2−

√
2









1
3









1 −
√

2 2
√

2√
2 1 −

√
2 2

2
√

2 1 −
√

2
−
√

2 2
√

2 1









1
4









2+
√

2 2−
√

2
√

2 −
√

2
2−

√
2 2+

√
2 −

√
2

√
2

−
√

2
√

2 2+
√

2 2−
√

2√
2 −

√
2 2−

√
2 2+

√
2









,

where, this time, we follow the notationsV0, V1, ..., andV8 of Appendix B of Ref-
erence [17] and whereϕ is the angleπ +Arccos(1/3). This matrix decomposition
leads to the circuit synthesis with

• six uncontrolledNEGATORs,
• six controlledV gates, and
• three controlledNOTs:

• W • W
−1 • V V • W

−1 • W •

V V • N(ϕ) • N(−ϕ) • V V
,

whereW−1 = XVW = N(7π/4).

11 Conclusion

With the help of truth tables, we have demonstrated that conventional Boolean com-
putation can be embedded in classical reversible computation. With the help of
square matrices, we have demonstrated that classical reversible computation is a
subspace of quantum computation. Classical reversible computing relates to quan-
tum computing like permutation matrices relate to unitary matrices. The permuta-
tion matrix group P(n) forms a subgroup of the unitary matrix group U(n). The main
leap from P(n) matrices to U(n) matrices happens by interpolation between two or
more permutation matrices, thus enlarging the finite group P(n) to the infinite group
XU(n). Figure 2 shows in detail the hierarchy of groups and subgroups, revealing
the relationship between the finite group P(n) and the infinite group U(n). The de-
composition of a given U(2w) matrix into ZU(2w) and CXU(2w) matrices leads to a
w-qubit synthesis of the U(2w) circuit withPHASOR andNEGATOR building blocks.
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Fig. 2 Hierarchy of the Lie
groups U(n), XU(n), ZU(n),
CXU(n), and ZZU(n) and the
finite groups P(n), CP(n), and
1(n).
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Appendix

For any matrixP from the group P(n), the following property holds:

P = C

(

1
P ′

)

,

where

• P ′ is a member of P(n−1) and
• C is a member of CP(n).
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Here, CP(n) denotes the group ofn×n circulant permutation matrices. It is a group
isomorphic with the cyclic groupZn, a finite group of ordern. Remarkable is the
fact that here

(

1
P ′
)

is only multiplied to the left with a circulant matrix, whereas
in decomposition (5), the matrix

(

1
X ′
)

is multiplied both to the left and to the right
with a circulant matrix.

The decomposition algorithm is very straightforward: suffice it to chooseC such
that it has the same leftmost column as the given matrixP. Subsequently, the matrix
(

1
P ′
)

follows automatically by computingC−1P. Here follows an example from
P(4):









0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0









=









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

















1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









.

By applying the theorem again and again, we find the followingdecomposition:

P = Cn

(

1
Cn−1

)

...

(

1n−3

C3

) (

1n−2

C2

)

, (7)

where allCk are CP(k) matrices. We conclude: anyn× n permutation matrix can
be decomposed as a product ofn− 1 matrices of the form

(

1n−k
Ck

)

. We give an
example:









0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0









=









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

















1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

















1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

Decomposition (6) is not a straightforward generalizationof (7). This constitutes
an illustration of the fact that, in spite of an overall similarity between the group P(n)
and the group XU(n), literal translations from P(n) properties to XU(n) properties
sometimes fail [24].
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