47 research outputs found

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Estimation of neural phase locking from stimulus-evoked potentials

    No full text
    The frequency extent over which fine structure is coded in the auditory nerve has been physiologically characterized in laboratory animals but is unknown in humans. Knowledge of the upper frequency limit in humans would inform the debate regarding the role of fine structure in human hearing. Of the presently available techniques, only the recording of mass neural potentials offers the promise to provide a physiological estimate of neural phase locking in humans. A challenge is to disambiguate neural phase locking from the receptor potentials. We studied mass potentials recorded on the cochlea and auditory nerve of cat and used several experimental manipulations to isolate the neural contribution to these potentials. We find a surprisingly large neural contribution in the signal recorded on the cochlear round window, and this contribution is in many aspects similar to the potential measured on the auditory nerve. The results suggest that recording of mass potentials through the middle ear is a promising approach to examine neural phase locking in humans.status: publishe

    Human Neural Tuning Estimated from Compound Action Potentials in Normal Hearing Human Volunteers

    No full text
    The sharpness of cochlear frequency tuning in humans is debated. Evoked otoacoustic emissions and psychophysical measurements suggest sharper tuning in humans than in laboratory animals [15], but this is disputed based on comparisons of behavioral and electrophysiological measurements across species [14]. Here we used evoked mass potentials to electrophysiologically quantify tuning (Q10) in humans. We combined a notched noise forward masking paradigm [9] with the recording of trans tympanic compound action potentials (CAP) from masked probe tones in awake human and anesthetized monkey (Macaca mulatta). We compare our results to data obtained with the same paradigm in cat and chinchilla [16], and find that CAP-Q10values in human are ~1.6x higher than in cat and chinchilla and ~1.3x higher than in monkey. To estimate frequency tuning of single auditory nerve fibers (ANFs) in humans, we derive conversion functions from ANFs in cat, chinchilla, and monkey and apply these to the human CAP measurements. The data suggest that sharp cochlear tuning is a feature of old-world primates.status: publishe

    Assessment of the Limits of Neural Phase-Locking Using Mass Potentials

    No full text
    In the diverse mechanosensory systems that animals evolved, the waveform of stimuli can be encoded by phase-locking in spike trains of primary afferents. Coding of the fine-structure of sounds via phase-locking is thought to be critical for hearing. The upper frequency limit of phase-locking varies across species and is unknown in humans. We applied a method developed earlier, based on neural adaptation evoked by forward masking, to analyse mass potentials recorded on the cochlea and auditory nerve in the cat. The method allows us to separate neural phase-locking from receptor potentials. We find that the frequency limit of neural phase-locking obtained from mass potentials was very similar to that reported for individual auditory nerve fibers. The results suggest that this is a promising approach to examine neural phase-locking in humans with normal or impaired hearing or in other species for which direct recordings from primary afferents are not feasible.status: publishe

    Signatures Of Somatic Inhibition And Dendritic Excitation In Auditory Brainstem Field Potentials

    Get PDF
    Extracellular voltage recordings (Vₑ; field potentials) provide an accessible view of in vivo neural activity, but proper interpretation of field potentials is a long-standing challenge. Computational modeling can aid in identifying neural generators of field potentials. In the auditory brainstem of cats, spatial patterns of sound-evoked Vₑ can resemble, strikingly, Vₑ generated by current dipoles. Previously, we developed a biophysically-based model of a binaural brainstem nucleus, the medial superior olive (MSO), that accounts qualitatively for observed dipole-like Vₑ patterns in sustained responses to monaural tones with frequencies \u3e~1000 Hz (Goldwyn et al., 2014). We have observed, however, that Vₑ patterns in cats of both sexes appear more monopole-like for lower-frequency tones. Here, we enhance our theory to accurately reproduce dipole and non-dipole features of Vₑ responses to monaural tones with frequencies ranging from 600 to 1800 Hz. By applying our model to data, we estimate time courses of paired input currents to MSO neurons. We interpret these inputs as dendrite-targeting excitation and soma-targeting inhibition (the latter contributes non-dipole-like features to Vₑ responses). Aspects of inferred inputs are consistent with synaptic inputs to MSO neurons including the tendencies of inhibitory inputs to attenuate in response to high-frequency tones and to precede excitatory inputs. Importantly, our updated theory can be tested experimentally by blocking synaptic inputs. MSO neurons perform a critical role in sound localization and binaural hearing. By solving an inverse problem to uncover synaptic inputs from Vₑ patterns we provide a new perspective on MSO physiology

    Frequency selectivity in monkey auditory nerve studied with suprathreshold multicomponent stimuli

    No full text
    Data from non-human primates can help extend observations from non-primate species to humans. Here we report measurements on the auditory nerve of macaque monkeys in the context of a controversial topic important to human hearing. A range of techniques have been used to examine the claim, which is not generally accepted, that human frequency tuning is sharper than traditionally thought, and sharper than in commonly used animal models. Data from single auditory-nerve fibers occupy a pivotal position to examine this claim, but are not available for humans. A previous study reported sharper tuning in auditory-nerve fibers of macaque relative to the cat. A limitation of these and other single-fiber data is that frequency selectivity was measured with tonal threshold-tuning curves, which do not directly assess spectral filtering and whose shape is sharpened by cochlear nonlinearity. Our aim was to measure spectral filtering with wideband suprathreshold stimuli in the macaque auditory nerve. We obtained responses of single nerve fibers of anesthetized macaque monkeys and cats to a suprathreshold, wideband, multicomponent stimulus designed to allow characterization of spectral filtering at any cochlear locus. Quantitatively the differences between the two species are smaller than in previous studies, but consistent with these studies the filters obtained show a trend of sharper tuning in macaque, relative to the cat, for fibers in the basal half of the cochlea. We also examined differences in group delay measured on the phase data near the characteristic frequency versus in the low-frequency tail. The phase data are consistent with the interpretation of sharper frequency tuning in monkey in the basal half of the cochlea. We conclude that use of suprathreshold, wide-band stimuli supports the interpretation of sharper frequency selectivity in macaque nerve fibers relative to the cat, although the difference is less marked than apparent from the assessment with tonal threshold-based data.</p
    corecore