4,365 research outputs found

    Neutrino oscillation phase dynamically induced by f(R)-gravity

    Full text link
    The gravitational phase shift of neutrino oscillation can be discussed in the framework of f(R)-gravity. We show that the shift of quantum mechanical phase can depend on the given f(R)-theory that we choose. This fact is general and could constitute a fundamental test to discriminate among the various alternative relativistic theories of gravity. Estimations of ratio between the gravitational phase shift and the standard phase are carried out for the electronic Solar neutrinos.Comment: 4 page

    Correspondence between Jordan-Einstein frames and Palatini-metric formalisms

    Full text link
    We discuss the conformal symmetry between Jordan and Einstein frames considering their relations with the metric and Palatini formalisms for modified gravity. Appropriate conformal transformations are taken into account leading to the evident connection between the gravitational actions in the two mentioned frames and the Hilbert-Einstein action with a cosmological constant. We show that the apparent differences between Palatini and metric formalisms strictly depend on the representation while the number of degrees of freedom is preserved. This means that the dynamical content of both formalism is identical.Comment: 6 pages, to appear in Mod. Phys. Lett.

    Atogepant for the Prevention of Episodic Migraine in Adults: A Systematic Review and Meta-Analysis of Efficacy and Safety

    Get PDF
    Introduction: The inhibition of the calcitonin gene-related peptide (CGRP) pathway has attracted interest in pharmacological research on migraine. Atogepant is a potent, selective, orally available antagonist of the CGRP receptor approved as a preventive treatment of episodic migraine. This systematic review with meta-analysis aims to evaluate the efficacy and safety of atogepant for the prevention of episodic migraine in adult patients. Methods: Randomized, placebo-controlled, single or double-blinded trials were identified through a systematic literature search (December week 4, 2021). Main outcomes included the changes from baseline in monthly migraine days and the incidence of adverse events (AEs) and treatment withdrawal due to AEs. Mean difference (MD) and risk ratio (RR) with 95% confidence intervals (95% CIs) were estimated. Results: Two trials were included, overall enrolling 1550 patients. A total of 408 participants were randomized to placebo, 314 to atogepant 10 mg, 411 to atogepant 30 mg, and 417 to atogepant 60 mg once daily. The mean age of the patients was 41.0 years and 87.7% were women. The reduction in the mean number of migraine days from baseline across the 12-week treatment period was significantly greater among patients treated with atogepant at either the daily dose of 10 mg (MD − 1.16, 95% CI − 1.60 to − 0.73, p < 0.001), 30 mg (MD − 1.15, 95% CI − 1.54 to − 0.76, p < 0.001), or 60 mg (MD − 1.20, 95% CI − 2.18 to − 0.22, p = 0.016) than with placebo. There were no differences in the occurrence of AEs and drug withdrawal due to AEs between atogepant and placebo groups. Constipation was more commonly observed in patients treated with atogepant at 30 mg/day than placebo (RR 5.19, 95% CI 2.00–13.46; p = 0.001). Treatment with atogepant at the daily dose of 60 mg was associated with a higher risk of constipation (RR 4.92, 95% CI 1.89–12.79; p = 0.001) and nausea (RR 2.73, 95% CI 1.47–5.06; p = 0.001) than placebo. Conclusion: Atogepant is an efficacious and overall well-tolerated treatment for the prevention of episodic migraine in adults

    Can anthocyanin presence ameliorate the photosynthetic performance of Prunus saplings subjected to polyethylene glycol-simulated water stress?

    Get PDF
    The aim was the evaluation of the biochemical and physiological responses of green- (GP) and red-leafed (RP) Prunus cerasifera mature leaves to 20 d of polyethylene glycol (PEG 6000)-induced water stress in order to elucidate a possible ameliorative role exerted by anthocyanins. At 10 d, the anthocyanin content remained unchanged in RP water-stressed leaves. Photosynthetic rate was lower in GP than that of RP (83.4 vs. 76.5%, respectively), paralleled by a higher degree of photoinhibition (Fv/Fm) in GP leaves. Leaves of GP accounted for higher content of soluble sugars at 10 d, when RP only showed a slight sucrose increase. At 20 d of stress, both morphs recovered their Fv/Fm values, suggesting the ability of both genotypes to adjust their photosynthetic metabolism under conditions of water stress. In conclusion, besides the sunscreen role served by anthocyanins, the carbon sink by these flavonoids might have further prevented sugar accumulation and the consequent sugar-promoted feedback regulation of photosynthesis in drought-stressed red leaves

    The Distribution of Mass in the Orion Dwarf Galaxy

    Get PDF
    Dwarf galaxies are good candidates to investigate the nature of Dark Matter, because their kinematics are dominated by this component down to small galactocentric radii. We present here the results of detailed kinematic analysis and mass modelling of the Orion dwarf galaxy, for which we derive a high quality and high resolution rotation curve that contains negligible non-circular motions and we correct it for the asymmetric drift. Moreover, we leverage the proximity (D = 5.4 kpc) and convenient inclination (47{\deg}) to produce reliable mass models of this system. We find that the Universal Rotation Curve mass model (Freeman disk + Burkert halo + gas disk) fits the observational data accurately. In contrast, the NFW halo + Freeman disk + gas disk mass model is unable to reproduce the observed Rotation Curve, a common outcome in dwarf galaxies. Finally, we attempt to fit the data with a MOdified Newtonian Dynamics (MOND) prescription. With the present data and with the present assumptions on distance, stellar mass, constant inclination and reliability of the gaseous mass, the MOND "amplification" of the baryonic component appears to be too small to mimic the required "dark component". The Orion dwarf reveals a cored DM density distribution and a possible tension between observations and the canonical MOND formalism.Comment: 8 pages, 9 figures, accepted for publication in MNRA

    Photosynthetic traits and biochemical responses in strawberry (Fragaria × ananassa duch.) leaves supplemented with led lights

    Get PDF
    Selected light wavebands promote plant development and/or the biosynthesis of targeted metabolites. This work offers new insights on the effects of red (R), green (G), blue (B), and white (W – R:G:B; 1:1:1) LED light supplementation on physiochemical traits of strawberry leaves. Gas exchange and chlorophyll fluorescence parameters, photosynthetic pigments, and superoxide anion (•O2–) content were analysed in plants grown for 1 (T1) and 17 (T17) d with light supplementations. At T1, light supplementations resulted in the enhancement of the de-epoxidation state of xanthophylls and nonphotochemical quenching, but no changes were observed in maximal photosynthetic rate (PNmax), irrespective of light spectra. At T17, xanthophyll contents remained higher only in R-supplemented plants. Overall, W light resulted in higher photosynthesis, whilst R and B light depressed PNmax values and promoted•O2 – formation at T17. G light did not induce variations in photosynthetic traits nor induced oxidative stress at both T1 and T17

    Creedy, Jean Iris

    Get PDF
    The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones

    Starving leukemia to induce differentiation

    Get PDF
    A new study shows that fasting induces the differentiation and elimination of some types of leukemia in mice, which implicates fasting or its mimetics as a novel strategy for the treatment of this disease
    • …
    corecore