1,002 research outputs found

    The high mass end of the Tully-Fisher relation

    Get PDF
    We study the location of massive disk galaxies on the Tully-Fisher relation. Using a combination of K-band photometry and high-quality rotation curves, we show that in traditional formulations of the TF relation (using the width of the global HI profile or the maximum rotation velocity), galaxies with rotation velocities larger than 200 km/s lie systematically to the right of the relation defined by less massive systems, causing a characteristic `kink' in the relations. Massive, early-type disk galaxies in particular have a large offset, up to 1.5 magnitudes, from the main relation defined by less massive and later-type spirals. The presence of a change in slope at the high-mass end of the Tully-Fisher relation has important consequences for the use of the Tully-Fisher relation as a tool for estimating distances to galaxies or for probing galaxy evolution. In particular, the luminosity evolution of massive galaxies since z = 1 may have been significantly larger than estimated in several recent studies. We also show that many of the galaxies with the largest offsets have declining rotation curves and that the change in slope largely disappears when we use the asymptotic rotation velocity as kinematic parameter. The remaining deviations from linearity can be removed when we simultaneously use the total baryonic mass (stars + gas) instead of the optical or near-infrared luminosity. Our results strengthen the view that the Tully-Fisher relation fundamentally links the mass of dark matter haloes with the total baryonic mass embedded in them.Comment: 12 pages, 7 figures. Accepted for publication in MNRA

    Spin currents in superconductors

    Full text link
    It is argued that experiments on rotating superconductors provide evidence for the existence of macroscopic spin currents in superconductors in the absence of applied external fields. Furthermore it is shown that the model of hole superconductivity predicts the existence of such currents in all superconductors. In addition it is pointed out that spin currents are required within a related macroscopic (London-like) electrodynamic description of superconductors recently proposed. The spin current arises through an intrinsic spin Hall effect when negative charge is expelled from the interior of the metal upon the transition to the superconducting state

    From gas to galaxies

    Full text link
    The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes. In deep surveys SKA will be able to detect HI in emission out to redshifts of z≈2.5z \approx 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars. These and other aspects of SKA imaging of galaxies will be discussed.Comment: To be published in New Astronomy Reviews, Elsevier, Amsterdam as part of "Science with the Square Kilometre Array", eds. C. Carilli and S. Rawlings. 18 pages + 13 figures; high resolution version and other chapters of "Science with the Square Kilometre Array" available at http://www.skatelescope.org/pages/science_gen.ht

    Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors

    Full text link
    Non-classical response to rotation is a hallmark of quantum ordered states such as superconductors and superfluids. The rotational responses of all currently known single-component "super" states of matter (superconductors, superfluids and supersolids) are largely described by two fundamental principles and fall into two categories according to whether the systems are composed of charged or neutral particles: the London law relating the angular velocity to a subsequently established magnetic field and the Onsager-Feynman quantization of superfluid velocity. These laws are theoretically shown to be violated in a two-component superconductor such as the projected liquid metallic states of hydrogen and deuterium at high pressures. The rotational responses of liquid metallic hydrogen or deuterium identify them as a new class of dissipationless states; they also directly point to a particular experimental route for verification of their existence.Comment: Nature Physics in print. This is an early version of the paper. The final version will be posted 6 months after its publication Nature Physics, according to the journal polic

    Study of Surface Damage in Silicon by Irradiation with Focused Rubidium Ions

    Get PDF
    Cold atom ion sources have been developed and commercialized as alternative sources for focused ion beams (FIB). So far, applications and related research have not been widely reported. In this paper, a prototype rubidium FIB is used to study the irradiation damage of 8.5 keV beam energy Rb+^+ ions on silicon to examine the suitability of rubidium for nanomachining applications. Transmission electron microscopy combined with energy dispersive X-ray spectroscopy is applied to silicon samples irradiated by different doses of rubidium ions. The experimental results show a duplex damage layer consisting of an outer layer of oxidation without Rb and an inner layer containing Rb mostly at the interface to the underlying Si substrate. The steady-state damage layer is measured to be 23.2(±0.3)23.2(\pm 0.3) nm thick with a rubidium staining level of 7(±1)7(\pm1) atomic percentage

    Baryonic Tully-Fisher Relation for Extremely Low Mass Galaxies

    Full text link
    We study Tully-Fisher relations for a sample that combines extremely faint (M_B > -14.0) galaxies along with bright (i.e. L_*) galaxies. Accurate (~ 10%) distances, I band photometry, and B-V colors are known for the majority of the galaxies in our sample. The faint galaxies are drawn from the Faint Irregular Galaxy GMRT survey (FIGGS), and we have HI rotation velocities derived from aperture synthesis observations for all of them. For the faint galaxies, we find that even though the median HI and stellar masses are comparable, the HI mass correlates significantly better with the circular velocity indicators than the stellar mass. We also find that W20_{20} correlates better with mass than the rotation velocity, although the difference is not statistically significant. The faint galaxies lie systematically below the I band TF relation defined by bright galaxies, and also show significantly more intrinsic scatter. This implies that the integrated star formation in these galaxies has been both less efficient and also less regulated than in large galaxies. We find that while the faint end deviation is greatly reduced in Baryonic Tully-Fisher (BTF) relations, the existence of a break at the faint end of the BTF is subject to systematics such as the assumed stellar mass to light ratio. If we assume that there is an intrinsic BTF and try to determine the baryonic mass by searching for prescriptions that lead to the tightest BTF, we find that scaling the HI mass leads to a much more significant tightening than scaling the stellar mass to light ratio. The most significant tightening that we find however, is if we scale the entire baryonic mass of the faint (but not the bright) galaxies. Such a scenario would be consistent with models where dwarf (but not large) galaxies have a large fraction of dark or ``missing'' baryons (Slightly abridged)Comment: 7 pages, 7 figures. Accepted for publication in MNRA

    Electrodynamics of superconductors

    Full text link
    An alternate set of equations to describe the electrodynamics of superconductors at a macroscopic level is proposed. These equations resemble equations originally proposed by the London brothers but later discarded by them. Unlike the conventional London equations the alternate equations are relativistically covariant, and they can be understood as arising from the 'rigidity' of the superfluid wave function in a relativistically covariant microscopic theory. They predict that an internal 'spontaneous' electric field exists in superconductors, and that externally applied electric fields, both longitudinal and transverse, are screened over a London penetration length, as magnetic fields are. The associated longitudinal dielectric function predicts a much steeper plasmon dispersion relation than the conventional theory, and a blue shift of the minimum plasmon frequency for small samples. It is argued that the conventional London equations lead to difficulties that are removed in the present theory, and that the proposed equations do not contradict any known experimental facts. Experimental tests are discussed.Comment: Small changes following referee's and editor's comments; to be published in Phys.Rev.

    HI Observations of Five Groups of Galaxies

    Full text link
    We present the results of HI observations of five groups of galaxies spanning a range of velocity dispersion and spiral fraction (brightest optical group member in parenthesis): NGC 7582 (NGC 7552), USGC U207 (NGC 2759), USGC U070 (NGC 664), USGC U412 (NGC 3822), USGC U451 (NGC 4065). Neutral intragroup gas is detected in three of the five groups. We present the discovery of a previously uncataloged galaxy in the USGC U070 group at RA(2000)= 01h45m27s, Dec(2000) = +04d36'19" which we are designating FSW J014526.92+043619.1. We compile an HI mass function for the group environment and find that the faint-end slope is consistent with being flat.Comment: 9 pages, 7 figures (slightly degraded in quality), emulateapj, accepted for publication in the Astronomical Journa

    Why holes are not like electrons. II. The role of the electron-ion interaction

    Full text link
    In recent work, we discussed the difference between electrons and holes in energy band in solids from a many-particle point of view, originating in the electron-electron interaction, and argued that it has fundamental consequences for superconductivity. Here we discuss the fact that there is also a fundamental difference between electrons and holes already at the single particle level, arising from the electron-ion interaction. The difference between electrons and holes due to this effect parallels the difference due to electron-electron interactions: {\it holes are more dressed than electrons}. We propose that superconductivity originates in 'undressing' of carriers from bothboth electron-electron and electron-ion interactions, and that both aspects of undressing have observable consequences.Comment: Continuation of Phys.Rev.B65, 184502 (2002) = cond-mat/0109385 (2001
    • …
    corecore