85 research outputs found

    Chlamydial Pre-Infection Protects From Subsequent Herpes Simplex Virus-2 Challenge in a Murine Vaginal Super-Infection Model

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singlyinfected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans

    ITI-007 for the Treatment of Schizophrenia: A 4-Week Randomized, Double-Blind, Controlled Trial

    No full text
    BACKGROUND: An urgent need exists for new treatments of schizophrenia that are effective against a broad range of symptoms and free of limiting safety issues. ITI-007 is a new molecular entity with a pharmacologic profile that combines dose-related monoamine modulation with phosphorylation of intracellular signaling proteins. METHODS: A phase II randomized, double-blind, placebo-controlled, and active-controlled trial was conducted at eight sites in the United States with randomization of 335 acutely psychotic adults with schizophrenia. ITI-007 (60 mg and 120 mg), placebo, and risperidone, included for assay sensitivity, were evaluated as monotherapy for 4 weeks. The primary outcome measure was the Positive and Negative Syndrome Scale total score, with secondary analyses conducted on symptom subscales. RESULTS: ITI-007 60 mg (p = .017, effect size = .4) and risperidone (p = .013, effect size = .4) demonstrated antipsychotic efficacy superiority over placebo on the primary end point. The results of secondary analyses reflected improvements in negative and depressive symptoms by ITI-007 60 mg. ITI-007 120 mg did not separate from placebo. However, both doses of ITI-007 were well tolerated in this patient population, as evidenced by low discontinuation and adverse event rates, and were associated with a benign metabolic profile as evidenced by significantly lower levels of prolactin, fasting glucose, total cholesterol, and triglycerides than risperidone. CONCLUSIONS: The mechanistically novel investigational drug ITI-007 was effective for the treatment of schizophrenia and comparable with placebo on safety measures in this trial. Secondary analyses indicated that ITI-007 improved negative and depression symptoms and might have expanded therapeutic efficacy in comparison with current antipsychotic drugs

    Preliminary Evaluation of a Novel Fetal Guinea Pig Myelomeningocele Model.

    No full text
    IntroductionTranslational models of myelomeningocele (MMC) are needed to test novel in utero interventions. An ideal animal model for MMC has locomotor function at birth and is low cost enough to allow for high throughput. The rat MMC model is limited by immature locomotor function at birth. The ovine MMC model is a costly surgical model. Guinea pigs are uniquely suited for an MMC model being a small animal model with locomotor function at birth. We aimed to develop a retinoic acid (RA) model of MMC in the guinea pig and to evaluate if pregnant guinea pigs could tolerate uterine manipulation.MethodsTime-mated Dunkin Hartley guinea pig dams were dosed with 60 mg/kg of RA between gestation age (GA) 12 and 15 days in the development of an RA model. Fetuses were grossly evaluated for MMC lesions at Cesarean section after GA 31 days. Evaluation of the ability of pregnant guinea pig dams to tolerate uterine surgical intervention was performed by hysterotomy of a separated group of time-mated guinea pigs at GA 45, 50, and 55.ResultsForty-two pregnant guinea pigs were dosed with RA, with a total of 189 fetuses. The fetal demise rate was 38% (n = 71). A total of 118 fetuses were viable, 83% (n = 98) were normal fetuses, 8% (n = 10) had a neural tube defect, and 8% (n = 10) had a hematoma or other anomalies. No fetuses developed an MMC defect. None of the fetuses that underwent hysterotomy survived to term.ConclusionRA dosed at 60 mg/kg in guinea pigs between GA 12 and 15 did not result in MMC. Dunkin Hartley guinea pigs did not tolerate a hysterotomy near term in our surgical model. Further work is needed to determine if MMC can be induced in guinea pigs with alternate RA dosing
    • …
    corecore