84 research outputs found

    Mutation location on the RAS oncogene affects pathologic features and survival after resection of colorectal liver metastases

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136316/1/cncr30351_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136316/2/cncr30351.pd

    Changes in the multidisciplinary management of rectal cancer from 2009 to 2015 and associated improvements in short‐term outcomes

    Get PDF
    Aim: Significant recent changes in management of locally advanced rectal cancer include preoperative staging, use of extended neoadjuvant therapies, and minimally invasive surgery (MIS). This study was aimed at characterizing those changes and associated short‐term outcomes. Method: We retrospectively analysed treatment and outcome data from patients with T3/4 or N+ locally advanced rectal cancer ≀15 cm from the anal verge who were evaluated at a comprehensive cancer center in 2009–2015. Results: In total, 798 patients were identified and grouped into five cohorts based on treatment year: 2009‐2010, 2011, 2012, 2013, and 2014‐2015. Temporal changes included increased reliance on MRI staging, from 57% in 2009‐2010 to 98% in 2014‐2015 (p < 0.001); increased use of total neoadjuvant therapy, from 17% to 76% (p < 0.001); and increased use of MIS, from 33% to 70% (p < 0.001). Concurrently, median hospital stay decreased (from 7 to 5 days; p < 0.001), as did the rates of grade III‐V complications (from 13% to 7%; p < 0.05), surgical site infections (from 24% to 8%; p < 0.001), anastomotic leak (from 11% to 3%; p < 0.05), and positive circumferential resection margin (from 9% to 4%; p < 0.05). TNM downstaging increased from 62% to 74% (p = 0.002). Conclusion: Shifts toward MRI‐based staging, total neoadjuvant therapy, and MIS occurred between 2009 and 2015. Over the same period, treatment responses improved, and lengths of stay and the incidence of complications decreased

    EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer

    Get PDF
    Most patients with KRAS G12C-mutant non-small cell lung cancer (NSCLC) experience clinical benefit from selective KRASG12C inhibition, whereas patients with colorectal cancer bearing the same mutation rarely respond. To investigate the cause of the limited efficacy of KRASG12C inhibitors in colorectal cancer, we examined the effects of AMG510 in KRAS G12C colorectal cancer cell lines. Unlike NSCLC cell lines, KRAS G12C colorectal cancer models have high basal receptor tyrosine kinase (RTK) activation and are responsive to growth factor stimulation. In colorectal cancer lines, KRASG12C inhibition induces higher phospho-ERK rebound than in NSCLC cells. Although upstream activation of several RTKs interferes with KRASG12C blockade, we identify EGFR signaling as the dominant mechanism of colorectal cancer resistance to KRASG12C inhibitors. The combinatorial targeting of EGFR and KRASG12C is highly effective in colorectal cancer cells and patient-derived organoids and xenografts, suggesting a novel therapeutic strategy to treat patients with KRAS G12C colorectal cancer. SIGNIFICANCE: The efficacy of KRASG12C inhibitors in NSCLC and colorectal cancer is lineage-specific. RTK dependency and signaling rebound kinetics are responsible for sensitivity or resistance to KRASG12C inhibition in colorectal cancer. EGFR and KRASG12C should be concomitantly inhibited to overcome resistance to KRASG12C blockade in colorectal tumors.See related commentary by Koleilat and Kwong, p. 1094.This article is highlighted in the In This Issue feature, p. 1079

    Identification of Enriched Driver Gene Alterations in Subgroups of Non-Small Cell Lung Cancer Patients Based on Histology and Smoking Status

    Get PDF
    BACKGROUND: Appropriate patient selection is needed for targeted therapies that are efficacious only in patients with specific genetic alterations. We aimed to define subgroups of patients with candidate driver genes in patients with non-small cell lung cancer. METHODS: Patients with primary lung cancer who underwent clinical genetic tests at Guangdong General Hospital were enrolled. Driver genes were detected by sequencing, high-resolution melt analysis, qPCR, or multiple PCR and RACE methods. RESULTS: 524 patients were enrolled in this study, and the differences in driver gene alterations among subgroups were analyzed based on histology and smoking status. In a subgroup of non-smokers with adenocarcinoma, EGFR was the most frequently altered gene, with a mutation rate of 49.8%, followed by EML4-ALK (9.3%), PTEN (9.1%), PIK3CA (5.2%), c-Met (4.8%), KRAS (4.5%), STK11 (2.7%), and BRAF (1.9%). The three most frequently altered genes in a subgroup of smokers with adenocarcinoma were EGFR (22.0%), STK11 (19.0%), and KRAS (12.0%). We only found EGFR (8.0%), c-Met (2.8%), and PIK3CA (2.6%) alterations in the non-smoker with squamous cell carcinoma (SCC) subgroup. PTEN (16.1%), STK11 (8.3%), and PIK3CA (7.2%) were the three most frequently enriched genes in smokers with SCC. DDR2 and FGFR2 only presented in smokers with SCC (4.4% and 2.2%, respectively). Among these four subgroups, the differences in EGFR, KRAS, and PTEN mutations were statistically significant. CONCLUSION: The distinct features of driver gene alterations in different subgroups based on histology and smoking status were helpful in defining patients for future clinical trials that target these genes. This study also suggests that we may consider patients with infrequent alterations of driver genes as having rare or orphan diseases that should be managed with special molecularly targeted therapies

    Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion

    Get PDF
    Prior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma1 and have surveyed exons of protein-coding genes for mutations in 11 affected individuals2,3. Here we report whole-genome sequencing from nine individuals with colorectal cancer, including primary colorectal tumors and matched adjacent non-tumor tissues, at an average of 30.7× and 31.9× coverage, respectively. We identify an average of 75 somatic rearrangements per tumor, including complex networks of translocations between pairs of chromosomes. Eleven rearrangements encode predicted in-frame fusion proteins, including a fusion of VTI1A and TCF7L2 found in 3 out of 97 colorectal cancers. Although TCF7L2 encodes TCF4, which cooperates with ÎČ-catenin4 in colorectal carcinogenesis5,6, the fusion lacks the TCF4 ÎČ-catenin–binding domain. We found a colorectal carcinoma cell line harboring the fusion gene to be dependent on VTI1A-TCF7L2 for anchorage-independent growth using RNA interference-mediated knockdown. This study shows previously unidentified levels of genomic rearrangements in colorectal carcinoma that can lead to essential gene fusions and other oncogenic events
    • 

    corecore