84 research outputs found
Recommended from our members
Cytogenetic analysis of B-cell posttransplant lymphoproliferations validates the World Health Organization classification and suggests inclusion of florid follicular hyperplasia as a precursor lesion
Cytogenetic abnormalities in B-cell posttransplant lymphoproliferative disorders (PTLD) have not been well characterized. We thus performed cytogenetic analysis of 28 cases of B-cell PTLD, 1 infectious mononucleosis (IM)âlike lesion, 9 polymorphic PTLD, 17 monomorphic PTLD, and 1 classical Hodgkin lymphoma (HL), and correlated the karyotypic findings with the phenotype, Epstein- Barr virus infection status, and clinical outcome. Karyotypes of 19 cases of posttransplant florid follicular hyperplasia (FFH) were also analyzed. Informative karyotypes were obtained in 20 (71.4%) of 28 PTLDs and 18 (94.7%) of 19 FFHs. Clonal karyotypic abnormalities were detected in 13 (65%) of 20 PTLDs, including 9 (75%) of 12 monomorphic PTLDs, 2 (33.3%) of 6 polymorphic PTLDs, 1 IM-like lesion, and 1 HL, and 2 (11.1%) of 18 FFHs. Recurrent chromosome breaks at 1q11-21 (n = 6, including 1 FFH), 14q32 (n = 3, including 1 FFH), 16p13 (n = 3), 11q23-24 (n = 2), and 8q24 (c-MYC) (n = 2); gains of chromosome 7 (n = 4), X (n = 3), 2 (n = 3), 12 (n = 2); and loss of chromosome 22 (n = 2, including 1 IM- like lesion) were identified. The presence of cytogenetic abnormalities did not correlate with PTLD phenotype, Epstein-Barr virus infection, or clinical outcome. We describe novel karyotypic aberrations in PTLD and report clonal cytogenetic abnormalities in posttransplant FFH and an IM-like lesion for the first time. Our findings provide validation of the current World Health Organization classification of PTLD and also suggest incorporation of FFH as the earliest recognizable precursor of PTLD
Recommended from our members
The spectrum of myelodysplastic syndromes post-solid organ transplantation: A single institutional experience
An increased incidence of acute myeloid leukemia (AML) has recently been documented in patients post-solid organ transplantation but the incidence and types of myelodysplastic syndromes (MDS) occurring in this patient population are not known. We identified 5 patients (3M, 2F, age 48â64 years) who developed MDS ranging from 1.8 to 25 years (median 4.2 years) post-solid organ transplantation, only 2 patients had received azathioprine. The cumulative incidence of MDS in heart and lung transplant recipients at 15 years was 0.5% and 1.8%, respectively, which is markedly higher compared to the general population. Low-risk types of MDS predominated, 3 of 5 patients are alive (median 3.9 years) since diagnosis. Deletions of chromosome 20q, which have not been previously reported in post-transplant MDS/AML, were identified in 3 cases. Our findings expand the morphologic and cytogenetic spectrum of MDS occurring post-solid organ transplantation and suggest that mechanisms beside azathioprine toxicity might be important in disease pathogenesis
Mutation location on the RAS oncogene affects pathologic features and survival after resection of colorectal liver metastases
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136316/1/cncr30351_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136316/2/cncr30351.pd
Changes in the multidisciplinary management of rectal cancer from 2009 to 2015 and associated improvements in shortâterm outcomes
Aim:
Significant recent changes in management of locally advanced rectal cancer include preoperative staging, use of extended neoadjuvant therapies, and minimally invasive surgery (MIS). This study was aimed at characterizing those changes and associated shortâterm outcomes.
Method:
We retrospectively analysed treatment and outcome data from patients with T3/4 or N+ locally advanced rectal cancer â€15 cm from the anal verge who were evaluated at a comprehensive cancer center in 2009â2015.
Results:
In total, 798 patients were identified and grouped into five cohorts based on treatment year: 2009â2010, 2011, 2012, 2013, and 2014â2015. Temporal changes included increased reliance on MRI staging, from 57% in 2009â2010 to 98% in 2014â2015 (p < 0.001); increased use of total neoadjuvant therapy, from 17% to 76% (p < 0.001); and increased use of MIS, from 33% to 70% (p < 0.001). Concurrently, median hospital stay decreased (from 7 to 5 days; p < 0.001), as did the rates of grade IIIâV complications (from 13% to 7%; p < 0.05), surgical site infections (from 24% to 8%; p < 0.001), anastomotic leak (from 11% to 3%; p < 0.05), and positive circumferential resection margin (from 9% to 4%; p < 0.05). TNM downstaging increased from 62% to 74% (p = 0.002).
Conclusion:
Shifts toward MRIâbased staging, total neoadjuvant therapy, and MIS occurred between 2009 and 2015. Over the same period, treatment responses improved, and lengths of stay and the incidence of complications decreased
EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer
Most patients with KRAS G12C-mutant non-small cell lung cancer (NSCLC) experience clinical benefit from selective KRASG12C inhibition, whereas patients with colorectal cancer bearing the same mutation rarely respond. To investigate the cause of the limited efficacy of KRASG12C inhibitors in colorectal cancer, we examined the effects of AMG510 in KRAS G12C colorectal cancer cell lines. Unlike NSCLC cell lines, KRAS G12C colorectal cancer models have high basal receptor tyrosine kinase (RTK) activation and are responsive to growth factor stimulation. In colorectal cancer lines, KRASG12C inhibition induces higher phospho-ERK rebound than in NSCLC cells. Although upstream activation of several RTKs interferes with KRASG12C blockade, we identify EGFR signaling as the dominant mechanism of colorectal cancer resistance to KRASG12C inhibitors. The combinatorial targeting of EGFR and KRASG12C is highly effective in colorectal cancer cells and patient-derived organoids and xenografts, suggesting a novel therapeutic strategy to treat patients with KRAS G12C colorectal cancer. SIGNIFICANCE: The efficacy of KRASG12C inhibitors in NSCLC and colorectal cancer is lineage-specific. RTK dependency and signaling rebound kinetics are responsible for sensitivity or resistance to KRASG12C inhibition in colorectal cancer. EGFR and KRASG12C should be concomitantly inhibited to overcome resistance to KRASG12C blockade in colorectal tumors.See related commentary by Koleilat and Kwong, p. 1094.This article is highlighted in the In This Issue feature, p. 1079
Identification of Enriched Driver Gene Alterations in Subgroups of Non-Small Cell Lung Cancer Patients Based on Histology and Smoking Status
BACKGROUND: Appropriate patient selection is needed for targeted therapies that are efficacious only in patients with specific genetic alterations. We aimed to define subgroups of patients with candidate driver genes in patients with non-small cell lung cancer. METHODS: Patients with primary lung cancer who underwent clinical genetic tests at Guangdong General Hospital were enrolled. Driver genes were detected by sequencing, high-resolution melt analysis, qPCR, or multiple PCR and RACE methods. RESULTS: 524 patients were enrolled in this study, and the differences in driver gene alterations among subgroups were analyzed based on histology and smoking status. In a subgroup of non-smokers with adenocarcinoma, EGFR was the most frequently altered gene, with a mutation rate of 49.8%, followed by EML4-ALK (9.3%), PTEN (9.1%), PIK3CA (5.2%), c-Met (4.8%), KRAS (4.5%), STK11 (2.7%), and BRAF (1.9%). The three most frequently altered genes in a subgroup of smokers with adenocarcinoma were EGFR (22.0%), STK11 (19.0%), and KRAS (12.0%). We only found EGFR (8.0%), c-Met (2.8%), and PIK3CA (2.6%) alterations in the non-smoker with squamous cell carcinoma (SCC) subgroup. PTEN (16.1%), STK11 (8.3%), and PIK3CA (7.2%) were the three most frequently enriched genes in smokers with SCC. DDR2 and FGFR2 only presented in smokers with SCC (4.4% and 2.2%, respectively). Among these four subgroups, the differences in EGFR, KRAS, and PTEN mutations were statistically significant. CONCLUSION: The distinct features of driver gene alterations in different subgroups based on histology and smoking status were helpful in defining patients for future clinical trials that target these genes. This study also suggests that we may consider patients with infrequent alterations of driver genes as having rare or orphan diseases that should be managed with special molecularly targeted therapies
Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion
Prior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma1 and have surveyed exons of protein-coding genes for mutations in 11 affected individuals2,3. Here we report whole-genome sequencing from nine individuals with colorectal cancer, including primary colorectal tumors and matched adjacent non-tumor tissues, at an average of 30.7Ă and 31.9Ă coverage, respectively. We identify an average of 75 somatic rearrangements per tumor, including complex networks of translocations between pairs of chromosomes. Eleven rearrangements encode predicted in-frame fusion proteins, including a fusion of VTI1A and TCF7L2 found in 3 out of 97 colorectal cancers. Although TCF7L2 encodes TCF4, which cooperates with ÎČ-catenin4 in colorectal carcinogenesis5,6, the fusion lacks the TCF4 ÎČ-cateninâbinding domain. We found a colorectal carcinoma cell line harboring the fusion gene to be dependent on VTI1A-TCF7L2 for anchorage-independent growth using RNA interference-mediated knockdown. This study shows previously unidentified levels of genomic rearrangements in colorectal carcinoma that can lead to essential gene fusions and other oncogenic events
- âŠ