22 research outputs found

    Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans.

    Get PDF
    Venous malformations (VMs) are painful and deforming vascular lesions composed of dilated vascular channels, which are present from birth. Mutations in the TEK gene, encoding the tyrosine kinase receptor TIE2, are found in about half of sporadic (nonfamilial) VMs, and the causes of the remaining cases are unknown. Sclerotherapy, widely accepted as first-line treatment, is not fully efficient, and targeted therapy for this disease remains underexplored. We have generated a mouse model that faithfully mirrors human VM through mosaic expression of Pik3ca(H1047R), a constitutively active mutant of the p110α isoform of phosphatidylinositol 3-kinase (PI3K), in the embryonic mesoderm. Endothelial expression of Pik3ca(H1047R)resulted in endothelial cell (EC) hyperproliferation, reduction in pericyte coverage of blood vessels, and decreased expression of arteriovenous specification markers. PI3K pathway inhibition with rapamycin normalized EC hyperproliferation and pericyte coverage in postnatal retinas and stimulated VM regression in vivo. In line with the mouse data, we also report the presence of activating PIK3CA mutations in human VMs, mutually exclusive with TEK mutations. Our data demonstrate a causal relationship between activating Pik3ca mutations and the genesis of VMs, provide a genetic model that faithfully mirrors the normal etiology and development of this human disease, and establish the basis for the use of PI3K-targeted therapies in VMs.Postdoctoral fellowships were from EMBO (A LTF 165-2013) to S.D.C, EU Marie Curie (MEIF-CT-2005-010264) to E.T. and EU Marie Curie (PIIF-GA-2009-252846) to I.M.B. M.Z.-T. is supported by the EPSRC Early Career Fellowship of T.L.K. (EP/L006472/1). D.J.S. is a BHF Intermediate Basic Science Research Fellow (FS/15/33/31608). A.L.D is supported by the UK NIHR Joint UCL/University College London Hospitals Biomedical Research Centre. V.E.R.P. was supported by the Wellcome Trust (097721/Z/11/Z). R.K.S. is supported by the Wellcome Trust (WT098498), the Medical Research Council (M RC_MC_UU_12012/5). R.G.K. is supported by the NIHR Rare Diseases Translational Research Collaboration. V.W. is supported by the European FPVI Integrated Project ‘Eurostemcell’. M.F.L. and A.B. are supported by the King’s College London and UCL Comprehensive Cancer Imaging Centre CR-UK and EPSRC, in association with the MRC and DoH (England). W.A.P. is supported by funding from the National Health and Medical Research Council (NHMRC) of Australia. Work in the laboratory of M.G. is supported by research grants SAF2013-46542-P and SAF2014-59950-P from MICINN (Spain), 2014-SGR-725 from the Catalan Government, the People Programme (Marie Curie Actions) from the European Union's Seventh Framework Programme FP7/2007-2013/ (REA grant agreement 317250), the Institute of Health Carlos III (ISC III) and the European Regional Development Fund (ERDF) under the integrated Project of Excellence no. PIE13/00022 (ONCOPROFILE). Work in the laboratory of B.V. is supported by Cancer Research UK (C23338/A15965) and the UK NIHR University College London Hospitals Biomedical Research Centre.This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/scitranslmed.aad998

    Large-Scale Clonal Analysis Reveals Unexpected Complexity in Surface Ectoderm Morphogenesis

    Get PDF
    Background: Understanding the series of morphogenetic processes that underlie the making of embryo structures is a highly topical issue in developmental biology, essential for interpreting the massive molecular data currently available. In mouse embryo, long-term in vivo analysis of cell behaviours and movements is difficult because of the development in utero and the impossibility of long-term culture. Methodology/Principal Findings: We improved and combined two genetic methods of clonal analysis that together make practicable large-scale production of labelled clones. Using these methods we performed a clonal analysis of surface ectoderm (SE), a poorly understood structure, for a period that includes gastrulation and the establishment of the body plan. We show that SE formation starts with the definition at early gastrulation of a pool of founder cells that is already dorso-ventrally organized. This pool is then regionalized antero-posteriorly into three pools giving rise to head, trunk and tail. Each pool uses its own combination of cell rearrangements and mode of proliferation for elongation, despite a common clonal strategy that consists in disposing along the antero-posterior axis precursors of dorso-ventrally-oriented stripes of cells. Conclusions/Significance: We propose that these series of morphogenetic processes are organized temporally and spatially in a posterior zone of the embryo crucial for elongation. The variety of cell behaviours used by SE precursor cells indicates that these precursors are not equivalent, regardless of a common clonal origin and a common clonal strategy. Anothe

    In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity

    Get PDF
    Cells of the spinal cord and somites arise from shared, dual-fated precursors, located towards the posterior of the elongating embryo. Here we show that these neuromesodermal progenitors (NMPs) can readily be generated in vitro from mouse and human pluripotent stem cells by activating Wnt and Fgf signalling, timed to emulate in vivo development. Similar to NMPs in vivo, these cells co-express the neural factor Sox2 and the mesodermal factor Brachyury and differentiate into neural and paraxial mesoderm in vitro and in vivo. The neural cells produced by NMPs have spinal cord but not anterior neural identity and can differentiate into spinal cord motor neurons. This is consistent with the shared origin of spinal cord and somites and the distinct ontogeny of the anterior and posterior nervous system. Systematic analysis of the transcriptome during differentiation identifies the molecular correlates of each of the cell identities and the routes by which they are obtained. Moreover, we take advantage of the system to provide evidence that Brachyury represses neural differentiation and that signals from mesoderm are not necessary to induce the posterior identity of spinal cord cells. This indicates that the mesoderm inducing and posteriorising functions of Wnt signalling represent two molecularly separate activities. Together the data illustrate how reverse engineering normal developmental mechanisms allows the differentiation of specific cell types in vitro and the analysis of previous difficult to access aspects of embryo development

    Downregulation of connexin 45 gene products during mouse heart development

    No full text
    The electrical activity in heart is generated in the sinoatrial node and then propagates to the atrial and ventricular tissues. The gap junction channels that couple the myocytes are responsible for this propagation process. The gap junction channels are dodecamers of transmembrane proteins of the connexin (Cx) family. Three members of this family have been demonstrated to be synthesized in the cardiomyocytes: Cx40, Cx43, and Cx45. In addition, each of them has been shown to form channels with unique and specific electrophysiological properties. Understanding the conduction phenomenon requires detailed knowledge of the spatiotemporal expression pattern of these Cxs in heart. The expression patterns of Cx40 and Cx43 have been previously described in the adult heart and during its development. Here we report the expression of Cx45 gene products in mouse heart from the stage of the first contractions (8.5 days postcoitum [dpc]) to the adult stage. The Cx45 gene transcript was demonstrated by reverse transcriptase-polymerase chain reaction experiments to be present in heart at all stages investigated. Between 8.5 and 10.5 dpc it was shown by in situ hybridization to be expressed in low amounts in all cardiac compartments (including the inflow and outflow tracts and the atrioventricular canal) and then to be downregulated from 11 to 12 dpc onward. At subsequent fetal stages, the transcript was weakly detected in the ventricles, with the most distinct expression in the outflow tract. Cx45 protein was demonstrated by immunofluorescence microscopy to be expressed in the myocytes of young embryonic hearts (8.5 to 9.5 dpc). However, beyond 10.5 dpc the protein was no longer detected with this technique in the embryonic, fetal, or neonatal working myocardium, although it could be shown by immunoblotting that the protein was still synthesized in neonatal heart. In the major part of adult heart, Cx45 was undetectable. It was, however, clearly seen in the anterior regions of the interventricular septum and in trace amounts in some small foci dispersed in the ventricular free walls. Cx45 gene is the first Cx gene so far demonstrated to be activated in heart at the stage of the first contractions. The coordination of myocytes during the slow peristaltic contractions that occur at this stage would thus appear to be controlled by the Cx45 channel

    Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation

    Get PDF
    The endogenous mechanism that determines vertebrate body length is unknown but must involve loss of chordo-neural-hinge (CNH)/axial stem cells and mesoderm progenitors in the tailbud. In early embryos, Fibroblast growth factor (FGF) maintains a cell pool that progressively generates the body and differentiation onset is driven by retinoid repression of FGF signalling. This raises the possibility that FGF maintains key tailbud cell populations and that rising retinoid activity underlies cessation of body axis elongation. Here we show that sudden loss of the mesodermal gene (Brachyury) from CNH and the mesoderm progenitor domain correlates with FGF signalling decline in the late chick tailbud. This is accompanied by expansion of neural gene expression and a similar change in cell fate markers is apparent in the human tailbud. Fate mapping of chick tailbud further revealed that spread of neural gene expression results from continued ingression of CNH-derived cells into the position of the mesoderm progenitor domain. Using gain and loss of function approaches in vitro and in vivo, we then show that attenuation of FGF/Erk signalling mediates this loss of Brachyury upstream of Wnt signalling, while high-level FGF maintains Brachyury and can induce ectopic CNH-like cell foci. We further demonstrate a rise in endogenous retinoid signalling in the tailbud and show that here FGF no longer opposes retinoid synthesis and activity. Furthermore, reduction of retinoid signalling at late stages elevated FGF activity and ectopically maintained mesodermal gene expression, implicating endogenous retinoid signalling in loss of mesoderm identity. Finally, axis termination is concluded by local cell death, which is reduced by blocking retinoid signalling, but involves an FGFR-independent mechanism. We propose that cessation of body elongation involves loss of FGF-dependent mesoderm identity in late stage tailbud and provide evidence that rising endogenous retinoid activity mediates this step and ultimately promotes cell death in chick tailbud
    corecore