9,533 research outputs found

    Numerical Formulation for the Prediction of Solid/Liquid Change of a Binary Alloy

    Get PDF
    A computational model is presented for the prediction of solid/liquid phase change energy transport including the influence of free convection fluid flow in the liquid phase region. The computational model considers the velocity components of all non-liquid phase change material control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid region. The thermal energy model includes the entire domain and uses an enthalpy like model and a recently developed method for handling the phase change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problem specifications. The convergence studies indicate that grid independence was achieved and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data is also provided in the form of velocity vector diagrams and isotherm plots for selected times in the evolution of both problems. The computational costs incurred are quite low by comparison with previous efforts on solving these problems

    Classical Electron Model with Negative Energy Density in Einstein-Cartan Theory of Gravitation

    Full text link
    Experimental result regarding the maximum limit of the radius of the electron \sim 10^{-16} cm and a few of the theoretical works suggest that the gravitational mass which is a priori a positive quantity in Newtonian mechanics may become negative in general theory of relativity. It is argued that such a negative gravitational mass and hence negative energy density also can be obtained with a better physical interpretation in the framework of Einstein-Cartan theory.Comment: 12 Latex pages, added refs and conclusion

    Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver.

    Get PDF
    Recently there has been great interest in using patterned ferroelectric materials for the photochemical growth of metal nanostructures. Variations in surface and sub-surface structure influence the photochemical processes. Here we show that crystallography, and hence remnant polarization, of the ferroelectric affects photo-deposition. The ratio of metal growth on c– and c+ domains varies from 1 : 2 for [100] to 1 : 100 for [111]. This is shown to be dependent on the variations in the band structu

    Switchable valley filter based on a graphene pp-nn junction in a magnetic field

    Full text link
    Low-energy excitations in graphene exhibit relativistic properties due to the linear dispersion relation close to the Dirac points in the first Brillouin zone. Two of the Dirac points located at opposite corners of the first Brillouin zone can be chosen as inequivalent, representing a new valley degree of freedom, in addition to the charge and spin of an electron. Using the valley degree of freedom to encode information has attracted significant interest, both theoretically and experimentally, and gave rise to the field of valleytronics. We study a graphene pp-nn junction in a uniform out-of-plane magnetic field as a platform to generate and controllably manipulate the valley polarization of electrons. We show that by tuning the external potential giving rise to the pp-nn junction we can switch the current from one valley polarization to the other. We also consider the effect of different types of edge terminations and present a setup, where we can partition an incoming valley-unpolarized current into two branches of valley-polarized currents. The branching ratio can be chosen by changing the location of the pp-nn junction using a gate.Comment: 8 pages, 7 figure

    A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    Get PDF
    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations

    The adoption and use of Through-life Engineering Services within UK Manufacturing Organisations

    Get PDF
    Manufacturing organisations seek ever more innovative approaches in order to maintain and improve their competitive position within the global market. One such initiative that is gaining significance is ‘through-life engineering services’. These seek to adopt ‘whole life’ service support through the greater understanding of component and system performance driven by knowledge gained from maintenance, repair and overhaul activities. This research presents the findings of exploratory research based on a survey of UK manufacturers who provide through-life engineering services. The survey findings illustrate significant issues to be addressed within the field before the concept becomes widely accepted. These include a more proactive approach to maintenance activities based on real-time responses; standardisation of data content, structure, collection, storage and retrieval protocols in support of maintenance; the development of clear definitions, ontologies and a taxonomy of through-life engineering services in support of the service delivery system; lack of understanding of component and system performance due to the presence of ‘No Fault Found’ events that skew maintenance metrics and the increased use of radio-frequency identification technology in support of maintenance data acquisition

    Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Full text link
    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.Comment: 11 pages, 9 figures, v3 with added reference
    • 

    corecore