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Summary

A computational model is presented for the prediction of solid/liquid phase-change energy trans-
port including the influence of free convection fluid flow in the liquid phase region. The computational
model considers the velocity components of all non-liquid phase change material control volumes to
be zero but fully solves the coupled mass-momentum problem within the liquid region. The ther-
mal energy model includes the entire domain and employs an enthalpy-like model and a recently
developed method for handling the phase-change interface non-linearity. Cohvergence studies are
performed and comparisons made with experimental data for two different problem specifications.
The convergence studies indicate that grid independence has been achieved and the comparison with
experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualita-
tive data is also provided in the form of velocity vector diagrams and isotherm plots for selected times
in the evolution of both problems. The computational costs incurred are quite low by comparison

with previous efforts on solving these problems.
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Nomenclature

A = finite difference coefficients

= right hand side

e = gpecific heat

o = transient coefficient

e = specific energy

Fo = Fourier modulus

g = gravitational acceleration

h = enthalpy

H = half-height of domain

k = thermal conductivity

n = normal to interface

P = pressure

Pr = Prandtl number

Ra = Rayleigh number

Ste = Stefan number

T = temperature

U, v = Cartesian velocity components

Vi = interface velocity

w = width of domain

T,y = Cartesian coordinates

Greek
= thermal diffusivity
= isobaric compressibility

6, A = change in accompanying variable
= nondimensional domain width
= modified diffusion coefficient

€ = half-fusion temperature range

A = latent heat of fusion

v = kinematic viscosity

P = density
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Superscripts

c = continuity

e, W, n,s.p = geographical molecule location
u,v,p, T = ¢ and v velocity, pressure, temperature
uu, up, vu = equation of first variable, multiplier
vp, TT of second variable

(%) = nondimensional

Subscripts

1,2,3 = solid, melt, or liquid

d = dynamic

e = east

f = fusion

] = discrete location

) = interfacial or dummy variable

4 = liquid

n = north

r = reference

8 = solid, or south

sp = gpecified

w = working variable, or west

T,y = z or y direction
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Chapter 1

Introduction

The Stefan problem, describing energy transport within a single component, phase change ma-
terial, is intrinsically highly non-linear. This non-linearity is due to the compatibility constraints
imposed at the solidification/melt front and involves the energy fluxes and front propagation veloc-
ity at the interface location. However, neither the fluxes, the interface propagation velocity, nor the
interface location itself are known a priori. As a result of this non-linearity, analytical solutions to
the Stefan problem are difficult, at best, and available for only a few relatively simple configura-
tions [1.2.3,4,5]. For more realistic problem specifications, discrete methods are required to effect
the solution. Traditionally, finite difference or finite element methods have been used; the suitability
and/or methodology of the spectral method has not yet been fully established. the enthalpy method
of Shamsundar and Sparrow is widely used [6].

In the application of the enthalpy model to phase change energy transport problems, the solution
of the algebraic system of equations consumes a considerable amount of computing time. This is at-
tributable to the fact that complete transient histories are generally required and, more significantly,
to the fact that Gauss—Siedel iteration or an equivalent procedure has been used to solve the equa-
tion system. The requirement for an iterative solution procedure emerges from the highly non-linear
character of the interface compatibility constraint [7]. In the enthalpy method, the interface location
is not tracked explicitly and its precise location can be resolved only to within one mesh spacing.
The interface non-linearity, then, appears in the enthalpy model in the form of a highly non-linear
equation of state relating enthalpy to temperature. In addition, this non-linear behavior is highly

concentrated within the immediate vicinity of the phase change interface, and is extremely difficult

to accommodate within the context of a simultaneous variable procedure for the equation system [8].



This difficulty is further augmented in problems for which more than one phase change boundary
must be accommodated within the domain.

Williams and Curry [9] presented a more implicit procedure for the solution of the algebraic
equation system for the case of one—-dimensional phase change energy transport. In their paper.
they attest to the difficulties involved in solving phase change problems and provide a procedure for
implementation to multiple interface problems. They achieve this through an energy distribution
technique in the vicinity of phase change interfaces which leads to a very complex solution procedure.
In addition. extension of their procedure to more than one space dimension does not appear possible
[10]. Since the majority of problems of practical importance involve two or three space dimensions.
this is a serious disadvantage of their procedure.

The numerical solution of solid/liquid phase change problems has been considerably simplified
and the associated costs dramatically reduced as a result of the method proposed by Schneider and
Raw [11] for one-dimensional problems. This procedure has also been employed in a two-dimensional
environment by Raw and Schneider [12] with comparable cost reductions to those observed for the
one-dimensional situation. Cost reductions are typically two orders of magnitude. All of the above-
réferenced methods and applications, however, have been restricted to conduction as the mode of
energy transport without regard for buoyancy induced free convective motion. In practice, in terres-
trial situations, it is frequently this free convective motion itself which is the dominant mechanism
for the thermal energy transport. As such, it is crucial that this fluid motion predictive capability
be available in a computational scheme in order to predict energy transport with sufficient accuracy
so as to be of practical value.

Unlike pure substances, multiconstituent systems do not exhibit a sharp interface between solid
and liquid phases. In fact, due to impurities (intentional or otherwise), discrete phase change rarely
occurs in practice. The phase change behavior of such systems depends on many factors including
the phase change environment, composition, and thermodynamic descriptions of specific phase trans-
formations. Moreover, solidification occurs over extended temperature ranges and solid formation
often occurs as a permeable crystalline-like matrix which coexists with the liquid phase.

Since they need not track phase interfaces, single region formulations are well suited for treating
the continuous transition between solid and liquid phases, as well as the evolution of latent energy
over a finite temperature range. Such formulations are generally developed from volume averaging
techniques based on classical mixture theory. Detailed developments of the theory are available in

the open literature [13]-[18], as are applications to inert systems such as dispersed oil droplets in



water and fluid saturated granular materials [19]-[21]. The theories have been extended to phase
change processes [22]-[24], although treatments have been restricted to one-dimensional, conduction
dominated conditions.

While continuum formulations have been shown to provide realistic predictions of transport be-
havior for conduction phase change problems, inclusion of advective components of momentum,
energy and species transfer does not appear to have been considered. Such an extension necessitates
consideration of multiphase region morphology, as well as relative phase velocities. While classi-
cal theories clearly acknowledge the significance of these factors, the desire to maintain universal
generality prohibits description beyond that of symbolic representations. Accordingly, the primary
objective of the present work is to develop a consistent set of continuum equations for the conserva-
tion of mass, momentum, energy, and species in a binary, solid-liquid phase change system. Emphasis
is placed on casting the equations into forms which are amenable to clear physical interpretation, as
well as to solution by conventional finite-difference or finite-element methods. Although achieving
this objective must come at the expense of a loss of generality, related assumptions and constraints

will be clearly identified and justified on the basis of physical considerations.



Chapter 2

Formulation of the Mathematical

Model

2.1 Binary Mixture Phase Change Problems

In the solid/liquid phase change of pure materials a discrete interface always separates the two
phases. Only solid exists on one side of the interfacial surface and only liquid on the other. In a
binary constituent phase change system the interface can take two forms. The interface may behave
like that of a pure material as described above. Frequently however, between the region of solid and
the region of liquid, there is a finite region with liquid finely interdispersed with solid. This region
is often described as being “mushy”. Morphologies like this may be caused by supercooled dendritic
growth. Dendrites can grow into each other creating a solid matrix having pockets or channels of
entrapped liquid throughout.

If a binary system exhibits a behavior like that of a pure material, then conservation of mass

and conservation of momentum for the liquid region are described by the familiar two-dimensional

equations
g—f + V- (V) =0, 21)
5(5’:]) = -V (pUV)=V -7 - -g—z + pb;, and (2.2)
8(5;11) = -V (V) -V-F - gs + pby, (2.3)

where 7; and 7, are the stress vectors defined by

o= ol + Tyxj' and 7 = Tryi + Tyy}' (2.4)



and where b, and b, are the per unit volume body force components for the z and y directions

respectively. The energy equation for the liquid portion is

Q%?lz—v-@mVy+vwmvT) (2.5)

where e; represents the specific internal energy for the liquid and k; is the thermal conductivity
of the liquid. Internal energy generated by viscous dissipation and compression work have been
neglected. Conservation of energy for the solid region does not need to include convective terms

since the velocity of the solid is assumed zero:

8(Ps€s)
Jt

=V (kVT). (2.6)

In a binary system which has a region of interdispersed solid and liquid, the above equations
are not convenient. It becomes impractical to resolve all of the details of the solid/liquid structure
in the mushy region. The mathematical formulation for this phase change situation will be derived
assuming solid and liquid phases can coexist in a locally distributed manner within control volumes

of differential dimensions.

2.2 Phase Conservation of a General Scalar Quantity

2.2.1 Introduction and Definitions

Mass, momentum, energy and species conservation equations are derived in this section for a single
phase within a control volume which may contain more than this one phase. Here phase refers to
either solid or liquid while constituent refers to either a chemical element or a compound. In this
formulation a constituents within k phases are allowed to occupy any differential volume in space
simultaneously.

The control volumes used in the derivations are shown in Figs. 1, 2, and 3 with discrete interfaces
separating solid from liquid. The precise location of the phase interfaces will generally not be known
but the volume fractions of solid and of liquid will be used to characterize the state of dispersion at
any location.

Some nomenclature relating to the distribution of solid and liquid must be defined before pro-
ceeding. The mean velocity of the constituents comprising phase k relative to a fixed reference frame
is denoted by Vi. The volume fraction of constituent « in phase k, that is, the volume occupied

by constituent o divided by the volume of phase k which contains the volume of constituent ¢, is



denoted by g¢. Similarly the volume fraction of phase k, that is the volume occupied by phase &
divided by the volume over which gi is evaluated which may be partially occupied by other phases,
is denoted by gx. The actual density of constituent « in phase & is denoted by p§. This density is the
same that would be determined from a sample of constituent a removed from phase k. The actual
density of phase k is denoted by pj and describes the mass per unit volume of a volume containing

only phase k. It should be noted that the sum over all phases of gi gives the result

ng = 1. ) (2.7)
k

The partial density of constituent a in phase k, denoted by p%, describes the mass of constituent o
contained by a volume occupied only by phase k, divided by that volume. This volume may contain
other constituents than just constituent @. A mathematical expression relates partial density to
actual density:

PR = gepk. (2.3)
The partial density of phase k, denoted by gi, describes the mass of phase & in a volume which may

contain phases other than phase &, divided by that volume. Mathematically gy is defined by
Pk = GkPk- (2.9)

In a manner analogous to Dalton’s rule of partial pressures, here the sum of all partial densities at

a location represents the actual density
p=3 p : (2.10)
k

where p denotes the actual density.

The mass fraction of constituent « in phase &, f7, is related to the partial density of constituent

a in phase k, p%, by

o

fr=tE

Pk

This mass fraction represents the mass of constituent & in a volume entirely occupied by phase k&

(2.11)

divided by the mass of the entire volume. The mass fraction of phase k, fi, is defined as

fe = Zikffk (2.12)

the mass of phase k in a volume partially occupied by other phases divided by the mass of the total
volume.
The conservation of a general quantity ¢ for a single phase k, ¢, is derived here in a Cartesian

coordinate framework for a two-dimensional control volume containing a mixture of phases. The



Figure 2.1:

control volume contains two phases with the total interfacial surface between the phases denoted by
A7 as shown in Figure 1. For convenience the bottom left corner of the control volume is located
at (z0,y0). The total volume A% includes both solid and liquid portions and is the product of the
width Az and the height Ay since unit depth is considered.

The general conservation principle is given in words by

Time rate of change of Net flow of ¢ across

¢ in volume occupied = phase k portion of control
by phase k faces

(T1) (T2)

(2.13)

+ Net flow into phase & + Source of¢@y in
across interfacial surface phase k£ volume.

(T3) (T4)

These four terms, the accumulation term (T'1), the control face flow term (7'2), the interfacial flow
term (7'3), and the source term (T'4) will be treated individually in the subsections that follow.
Expressions will be determined for a control volume of differential dimensions and the limiting result

per unit volume will be presented as the control volume dimensions are shrunk to zero.



2.2.2 The Accumulation Term

The symbolic representation of the accumulation term (7'1) is given by

d
= = Od¥ 2.
Tl o7 JLk(pw;\) (2.14)

“a {lon

Figure 2.2:
where ¥, is the portion of the control volume occupied by phase k. In Cartesian coordinates this

integration could be viewed as an integration between two curves, say z1(y) and z(y), or y1(z) and

y2(z), as shown in Figure 2. The integral part of the accumulation term can then be written in the

vo+Ay rza(y)
/ (P )dV = / / (prdr)dzdy
¥ v z1(y)

0 1y

zo+dz  rya(x) ;
= [ [ (prt)dyda (2.15)
zo

(=)

forms

Performing a Taylor series expansion of the integrand about (zo,yo) gives

vo+ay  rza(y) i)
IR O M (CERIE SPERIMCRED

0

o}
b (pt)| (5= 30) + .| decy (2.16)
Y 0
By bringing constants out of the integral and adjusting the limits, the above expression may be
simplified to

vo+Ady rz2(y) g
/ (z ~ 20)dady + 5-(peds) lo

z1(y)

9 .
Lk(Pkd)k)W: (Prdr) o AV + %(Ph‘l’k) !0-/y

0

8



zo+Az  y2(z) -
_/ / (y - yo)dydz + ... (2.17)

0 y1(z)

It can be shown that all terms except the first one become zero when Eq. 2.14 is divided by AY =
ArAy and the limit is taken as Az, Ay — 0. The second term is considered below, although similar
treatment applies to the third and all higher order terms.

A new variable representing the local range of z-direction integration is introduced by the defi-
nition
§z(y) = za2(y) — 21(y) (2.18)

Incorporating this definition we have that

i} (oroe) | /yo+Ay /rz(y)( \dzd
(ks T — zg)dzdy
()(L‘ PrPk lg o a:l(y) 0

= ai prdk) lo /WM [1522(11) + (z1(y) = z0)éz(y)| dy- (2.19)

The terms 6z(y) and (z1(y) — To) are both of the same order of size as Az and can be expressed as

a fraction of the control volume width Az in the form
6z(y) = Ri(y)Az and z1(y) — z0 = Ra(y)Az. (2.20)

With substitution of these definitions the above equation becomes

yo+Ay rz(y
pm IO/ / (z — zo)dzdy
Yo

0+A
- -ai Pxdk) lo / o [%R%(y)mz + R(y)Boly)Az?| dy. (2.21)

It is convenient to define

1) = 3R + Bal) Balo) (222

such that the integrand is now Az?f(y). The mean value theorem for integrals states that if f(y)is

continuous in [yo, ¥o + Ay), then there exists some point £ in (yo, ¥o + Ay) such that

vo+Ay
/ f(y)dy = Ay f(€). (2.23)
Yo
Using this result we can now write
d 2 vo+Ay 9 \
5o (Pedx) oAz Ay/ Fa)dy = 5-(pu0x) 16AZ°AYF(E) B0 SE<Uo+ By (224)
Y0



The range of Ry and Rz is 0 < Ry < land 0 < Ry < 2. Further, both R; and R, and hence f(£),
are independent of Az and Ay. If this term is now divided by AV = Azly and the limit is taken

as Az, Ay — 0, the result is

. J Az?A )
/_\h o 2 —(prdx) Io = yf(f) == Pk¢k) lof(€) 1;130 Az =0. (2.25)
-\530 Ay—0

[n a similar manner all terms in the Taylor series except the first reduce to zero when this limit

is taken. Thus the only contribution from the accumulation term, T'1, is

8 AF g

T1= = (pde) b Sge - (2.26)

The volume ratio of the liquid volume to the total volume as defined earlier is gx = %—? so that the

accumulation term is finally given on a per unit volume basis by

5,
T1= E;(Qkpkqbk) lo- (2.27)

2.2.3 The Control Face Flow Term

X +ax

|
\

Figure 2.3:

The term representing the flow across the portion of the control face occupied by phase k, T2, is
shown by Figure 3 to have four contributing components, one at each of the control faces. In symbolic

form the net flow of ¢ is given by
T2 == Jz: — Jr4Azx + Jy - Jy+Ay (228)

10



Considering the z-component, a Taylor series expansion can be performed about zq giving
dJy 1, ,d%J;
Jz — Jz:+A:: =Jz— |Jz + /_\IEE ‘Io + ETA:E 72—2'

Note that the flows considered here are only those associated with phase k. The effective portion of

e T (2.29)

the control faces for which there is a flow of ¢, can be given by the ratio R times the actual area of
the respective control faces. For the z-component flux the effective area is then R; - 1- .4y so that
the flow itself becomes

Jr =1 -AyRej, (2.30)
where j, is the average flux over the actual area of the control volume surface occupied by phase k.

The net z-component flux term is then given by

G, . 1 9? .
I —Axdya—x(Rz]z) lO - EiASEQAy%-E(Rr]z) ‘0 + ... (2.31)

Dividing the z-component flow term by A¥ = AzAy, and taking the limit as Az, Ay — 0

reduces the term to

.1 9 . .
gI:IL‘IES ;(Jx — Jeyaz) = E:'(Rx]r) . {2.32)
y—'

The y-component flow term similarly reduces to

, 1 d : .
AI;_IEO _‘,—;_(Jy = Jyray) = a_y(Rny) (2.33)
Ay—0

The control face flux term (T'2) for phase & is then

a : 15} . ‘ .
T2 = "a—z(RrJr) lo - %(Ryh) !0 (2.34)

where R, and R, are the effective ratios of areas for phase k flows at the control faces, and jr and

jy are area averaged fluxes of the actual areas occupied by phase k.

2.2.4 The Interfacial Flow Term
The flow of @) across the phase interface surface is defined by
T3 =/ Juo 7 dA (2.35)
Ay

where jk, is a flux across the interface and 7 is the normal to the interface directed into phase k.
Beyond this representation, the interfacial flux term will not be specifically evaluated because later
in the development this term is cancelled by a similar term associated with another phase. For

convenience this term is denoted by

T3 =1, . (2.36)

11



2.2.5 The Source Term

The source term is symbolically represented by

T4 = Sy d¥ (2.37)
¥

where S is a per unit volume source variable. The only specific form for §) that will be considered
is the body force in the momentum conservation equation. By a procedure similar to the one used

to reduce the control face flow term, the source term may be reduced to

T4 = (g St) lo (2.38)

2.2.6 Composed Equation for Phase Conservation of a General Scalar Quantity

Tle terms have been derived for the conservation equation of a general scalar quantity ¢ for a single
phase k, ¢k, for a control volume of differential size containing a mixture of phases. Substituting

these terms (71 — T4) into Eq. 2.13 gives

J , ] . 0 , ;
E(gkpk@c) fo = '%(RZJI::) io - a_y(Rny) + 14 |0 + (9 Sk) Io- (2.39)
Z !
(2 ‘o

Figure 2.4:

In order to simplify this equation, an assumption is made about the effective area ratios R, and R,.
Figure 4 shows two cases in which the volume fraction of phase &, gi, is equal to the effective area

ratios R, and R,. The assumption will be made here that
R: =Ry =g (2.40)

12



since in some cases it is true and since it is reasonable. Equation 2.39 now simplifies to
d d : a ., . -
5; 9kPk0k) lo = —5=(gkJz) lo = a_y(gk.]y) lo + i + (955%) |o - (2.41)

Because the control volume has been reduced to differential size and the balance used in its

derivation must apply for any choice of (zg, yo), the above equation can now be written as

0 i) , 3 i :
E(gkpk@bk) = _a_z(gka') - 5,;(91:]1/) + I; + gi Sk (2.42)

2.3 Phase Conservation Equations for Mass, Momentum, Energy

and Species

Equation 2.42 represents the conservation of a general scalar quantity ¢ for a single phase k, &,
for a control volume containing a mixture of phases. The scalar quantity ¢k, and the flux terms j
and j, are specified in this section for the conservation equations for mass, momentum, energy and

species.

2.3.1 Mass

The conservation of mass equation can be obtained from 2.42 with ¢ = 1, jz = pruk, Jy = pxtx and
[; = My giving

d d . a - o
57 (kPk) = ~-(grpritk) = %(gkpkvk) + My (2.43)

where M represents the contributions of mass flow into the phase k portion of the control volume

across the phase interface Aj.

2.3.2 Momentum

The statement of z-momentum conservation can be obtained from Eq. 2.42 with ¢x = uk, j: =

prUE — Thgz + Py Jy = PRUKVE — Thyzs [i = Gie and Sk = pigz. That is

a 0 0 .
'é‘t(gkpkuk) = —%[gk(/’kuz - Tkzz + Pk)] — %[gk(/}kukvk — Tkyz)] + Gk + 9kPrIz (2.44)

where Gy represents the production of momentum due to movement of the phase interface, g, is
the z-component of the gravity vector, and pk is the pressure associated with phase k.
The classical Newtonian constitutive equations need to be modified here due to spatial variations

in the phase volume fraction. Bennon and Incropera [25] define the dilation rate of phase k as

13



¥ - (gxVi) on a per unit volume of mixture basis. This was done to maintain consistency with the
conservation of mass equation, Eq. 2.43. In their definition of dilation rate these authors use gi Vi for
the velocity terms as they arise in the mass conservation equation. Following Bennon and Incropera,
any occurence of a velocity component will be replaced by gi times the velocity component. With

this requirement the constitutive equations for phase k are then given by

1 - d
Iz — sV V) A ’
kT 2k 3V (9x Vi) + Bzr(gkuk) and

0 0
GkTkyr = .u'k[ (?;::k) + (%kyuk)]. (2'45)

The statement of y-momentum conservation follows directly from Egs. 2.44 and 2.45 with the z
and y subscripts, and the velocity components permuted. The y-momentum conservation equations

are given by

] 0 a ‘ .
-.d—t(gkpk vg) = [gx(Peviuk — Thzy)] — a—y[gk(l)kvi = Tkyy T Px)] + Gy + 9kPkGys (2.46)

oz

0 O gx
GkTkzy = GkThyz = Kk [ (gak:k) + (g;;k)] , and

1 ~ d,
GkThyy = 2k [—gv (g Vi) + a—y(gkvk)} : (2.47)

2.3.3 Energy

The conservation requirement for energy can be obtained from Eq. 2.42 with ¢ = ex, Jz = prures -
kk%, Jy = PrUkei — kk%% and [; = E), yielding

0 0 oT a oT .
B’Z(gkpkek) = "5 [gk (Pkukek - kkb?)} ~ 5 {gk (kakek - kka—y>] + Ey (2.48)

Here e, is the specific internal energy of phase &, that is the internal energy of a volume containing
only phase k divided by the mass of that volume. Also ki is the thermal conductivity associated
with phase k& and E) represents the energy flow into phase k across the phase boundary, which is

partially due to movement of the phase interface.

2.3.4 Species

The conservation of species equation can be obtained from Eq. 2.42 with ¢x = f2, jz = prurfi —

a . a x -
o DEUE = prufe - peDE PR, and I = M. Hence

0 o o N N afe
Filarefi) = - o <9kpkukfk - grpPe D} gff_—)

14



(9 o o af‘i’
= 5 (9kkakfk - gkpi DY '8—;‘)

(2.49)
+ Mg
where D¢ is the Fickian mass diffusion coefficient associated with the diffusion of constituent « in

phase k across the phase boundary due to the movement of the phase interface.

2.3.5 Summary

Vass, momentum, energy and species conservation equations for a single phase k¥ in a mixture of
phases, Eqs. 2.43, 2.44, 2.48 and 2.49, are conveniently summarized in Table 1. The individ-
ual conservation equations are formed by substituting the terms in the body of the table for the

corresponding term in Eq. 2.42 indicated by the appropriate column heading.

Table 2.1: Summary of Conservation Equations for a Single Phase

Pk Jk Jy I; Sk

Mass 1 Pk Uk Pk Uk My | —

z-Momentum | uk | prui + Thzz + Pk PkUkVE + Tkye Gie | Pigs
y-Momentum | v PrUkVk + Thzy PV — Thyy + P& | Giy | PRy
Energy ek prues — ki 5t PrVker — kk%f' E, | —
Species | f& | prunf — kDEHE | prunfg - ok DRYE | M7 | —

2.4 Continuum Conservation Equations

Closure of the system of conservation equations for a binary mixture solid/liquid phase change

problem requires fewer equations than the number of solid and liquid phase equations implied in
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Section 2.3. By adding like solid and liquid phase conservation equations together, the number of
equations to be solved is reduced. The system of conservation equations is closed by relationships for
phase mass fraction fx and composition f{ which are discussed in Section 2.4.2, Material Properties.
The continuum equations formed by summing over the phases are simplified in this section by
invoking the definitions of fractional quantities, Egs. 2.8 - 2.12, and by introducing physically

realistic assumptions for a solid/liquid phase change system.

2.4.1 Mass

Summing the mass conservation equations for a phase k, Eq. 2.43, over all phases results in

dp o} d -
% = 55w - 5, (v) (2:50)
where p, u and v are the mass averaged quantities of density, u-velocity, v-velocity as defined by

Eq. 2.10 and by
V=

R~

S o Vi (2.51)
P

where V is the mass averaged velocity vector. The sum of the terms representing the flows of mass
across the phase boundaries is zero (3, M, = 0), since continuity requires that these flows, being

internal to the control volume, occur at each other’s expense.

Momentum

The statement of x-momentum conservation for a mixture is obtained by summing the x-momentum

conservation equation, Eq. 2.44, over each phase. This gives
(D) = - (T o)
a7 Z JkPrte | = — 2=~ ngpk Ug | —
ot \% 9z \ <
2
- 35 (% 9kPk> -
d
- % (; ngkyJ:>
k

Gk: + Z JkPrGz (252)
k

(5 o)
(57 )

k

Flo Plo

.|.

This equation may be simplified by using the definitions for average fluid quantities and by
introducing new variables. By the definition of mass-averaged velocity, Eq. 2.51, the term on the

left side of Eq. 2.52 becomes .C%(pu). The advective fluxes on the right side of the equation can be

16



decomposed into mean and relative components for each phase. The bracketed quantity of the first

term on the right side may be decomposed to give
S geprui = put + Y grpr(u — u)? (2.53)
k k

by using the definition for mixture density, p, and mass-averaged velocity, V. The fourth term on

the right side may be similarly decomposed giving
ngpkuku;c = puv + ngpk(uk —u)(vg —v) . (2.54)
! k

Often the relative components in Eqs. 2.53 and 2.54 may be neglected depending on the charac-

teristics of the problem. The pressure term may be simplified by defining
PED Qb (2.53)
k
By using the definition of mixture density p, the gravity term in Eq. 2.52 becomes

> gkprgz = PYs (2.56)
g .

By incorporating Eqs. 2.33, 2.34, 2.35 and 2.36, and the constitutive equation for stress Eqs. 2.45,

[£q. 2.52 becomes

ad . 0 ') 1 7 Ogiuk 4
a(pu): - a— [;( ( 3 . (ngk) + g;k))] _ a_:
5] %) Gk Vk Oguk
= gy v - z[;( (8 * 0y))]
- 2 [z sotue =] = 2[5 spion = o)
P
+ Z Grs + PGz | (2.57)
k

At this point, physically realistic assumptions for a solid/liquid phase change system will be made
so that Eq. 2.57 may be simplified. The convective terms Eqs. 2.53 and 2.54 will be addressed first.
Two new variables representing the u- and v-velocity components of the liquid relative to the solid,

are introduced here by the definitions
U = U — U, and v = v — v (2.58)
By algebraic manipulation and by use of the above definitions Eqs. 2.53 and 2.54 simplify to
- % [lel(ul ~u)® + gsps(us - u)Q} = - 8% (pf,fzuf) (2.59)
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- ;% gpi(ur — u)(vr = v) + gops(us — u)(vs —v)] = - %(Pfafzurvr) (2.60)

The stress terms may also be simplified for a solid/liquid system. It is assumed that the solid

does not contribute to x-momentum through internal stresses. This requires
Vigsus) = V(gsvs) =0 (2.61)

With this assumption the stress terms in Eq. 2.57 become

0 1 ~ a 1 -\ Sar
£ [2’; ('Zuk (— 3 Vo (g Ve + gkuk))] = [Q/i( (— 3 V. (91V1> + %)J (2.62)

9 9gk vk agk“k)) _ 0 B 2[ (8gw, 8g,u,>]
5 {ij (u.k( 5z + Oy = 3z (gimizz) = 3y M\ 57 + oy (2.63)

[t is further assumed that the local density gradients are negligible, that is

v (”") =0 (2.64)
p
The divergence of velocity, can be simplified using the assumption in Eq. 2.64 so that
. V
vV.V=v. (Z %) =3 (ﬂp’i v.(ngk)) . (2.65)
k k

Using the assumption stated in Eq. 2.61, this expression becomes

-

V~V=%V-(gﬂ/). (2.66)

Similarly the partial derivatives become

8?:1 _ % % (2.67)
Bag;vz _ % %3 (2.68)
.‘9(_93_;“_1 _ % Z_Z (2.69)

Substituting Eqs. 2.67 - 2.69, the stress terms, Eqs. 2.62 and 2.63 become
Alal3van ) - L n(ger 28] o
Shipew)-gb g e

By assuming constant viscosity, the above equations sum to

0 Lp - pau)} 0 [ p (81} 0u)] p |4 0% 1 9% 0%u

Ty (-=Lv.v A A A | A AL AL

0y[#1< 3 pi + p Oz +3y K o1 \oz + 0y H p |3 Oz? + 3 0zdy + 0y?
(2.72)

18



Substituting Eqs. 2.59, 2.60, 2.66 and 2.72 in Eq. 2.37 gives

dpu _ _ Opul _Opuww op (100w 1 O O
at oz ay H or |3 0z? 3 0zdy oy?
9% _ 9 oy _ 9
al_ am (pfsflur) 6y (pfsflurvr)
+ pgz + Y Gha . (2.73)
k

The fifth and sixth term on the right side of Eq. 2.73 are non-zero only in multiphase regions, where
relative phase velocities are very small. Consequently these terms often may be neglected.

The last term on the right side of Eq. 2.73, > Gy, represents the production of X-momentum
due to movement of the interface and shear stress at the phase interface. The former effect may be
neglected for most physically realistic problems. Bennon and Incropera [1] proposed that Darcy’s
law could be used to approximate the latter effect. Darcy’s law models the force on a liquid flowing

through a solid porous media such that

M
Fz:=—. Uy e
. (giu-) (2.74)

where K, denotes the permeability in the x-direction. Knowledge of the morphology of the solid /liquid
interface is necessary to determine the suitability of this model as well as the coefficient K
The equation for y-momentum conservation can be obtained from equation 2.73 by permuting

the subscripts and exchanging v for u. This equation then becomes

pv _ 0 p |4 0% 1 9%u 0%

9 _ 9 2 p |27y 1 L)
at Jz (pvu) 8y(pu ) +om o |3 Oy? T3 Ozdy T 5
dp 0 ) o
By 823 (Pfsfl'vru'r) 0y (afsflvr)
+ pgy + Z Ghy - (2.75)
k

Energy

The statement of energy conservation for a mixture is obtained by summing the energy conservation

equation for phase k, Eq. 2.48, over all phases, giving

0 0 aT
T [; (ngkek] = - 5 [Zk: (grprurer) — ki E]
I3} orT
ey [Xk: (grprvex) — K 5—37] (2.76)
where the mixture conductivity is defined by
k=Y gk . (2.77)
k
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The sum of the terms representing energy flow into a phase due to interface movement, Ey, is
zero since the exchange of energy represented by this sum is internal to the control volume. The

advective contribution can be decomposed in a manner similar to that for the x-momentum equation

giving
d 0 d ,
£ [Xk: (gkpkukhlc)] =% (puh) + P [Z; 9repre(up — u)(hy — h)} (2.78)
d @ g .
e > (grprvehe)| = (th) 3 > gepr(vx — v)(he < B)| (2.79)
& %
where the mixture enthalpy is defined by
1
h=- Z grprhs - (2.80)
P %

In the above equations, specific enthalpy h is assumed to be a suitable approximation of specific

internal energy e. Substituting Eqs. 2.78, 2.79 and 2.30 into Eq. 2.76 yields
d d : d d or 0 oT
- = - = - (pZ= = bl
2= - (o) - 5 o)+ 5 (k57) + 5 (£ 5)
%)
- 5 [; grpk(ur — u)(hy — h)J
0
32 [Z gepk(vk — U)(hk—h)jl . (2.81)
k

The temperature T’ can be eliminated from this expression by using the relation between temperature

and enthalpy

T
hi =/ wdT + Y, (2.32)
0
and the identity
VT =L Vhy= = Vh + = V(he—h). (2.83)
Ck Ck Ck
Here ¢ represents the specific heat of phase k. Equation 2.81 then becomes
d a d 0 [k Oh 0 [k Oh
E(Ph)— - a—x(lmh) - a—y(th) + 3 (; %) + 3y (z: 8_y>
0 [k 0 g [k O
— |— =— (A - hy - h
+8 ca(kh)] Oy[ By(k )]
a
- % Z grpi(uk — u)(he — )]
L%
0
- 5 Z gepk(vk — v)(he - (2.84)
L &
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Equation 2.84 may be rewritten specifically for a solid/liquid system. The last two terms can
be reduced by using the definitions for mass-averaged velocity, V, mixture density, p, and mixture

enthalpy, h. This equation becomes

0 1] d 15} k Oh 0 k oh
5 h)= - 55 (Puh) = %(th) * 5 (c—’ 3—z> * % <c, ay>
) k J 9 [k 0
o meen] s g [ g e
3]
- 3 pfsushs + pfiwhy — puh]
3]
- E_y' [pfsvsh's + pfivihy - pvh] : (285)

The last two terms of Eq. 2.85 are non-zero only in the multi-phase region.

Species

The species conservation equation for a mixture is obtained from Eq. 2.48 by summing over each

phase. Hence

a [+
[Xk: (gror fi l = - d—i [XK: <ngkkak - grpxD§ afk>]
]

. oo
T 9y [Z (9kpk'ka? — g DY g;)] (2.86)
k

The term in Eq. 2.48 representing transport of species « into phase £ across the phase boundary,

Mk., does not appear here because this transport, being internal to the control volume, is zero due

to mass continuity. The advective contribution may be decomposed such that
ST geerurfE = puf* + D gepr(ur - w)(fE - %) (2.87)
k k

S gkpevrfE = pvf* + Y grpr(v - 0)(JE - ) (2.88)
k k
Where the mixture concentration of species « is defined by
1
"= Y g (2:89)
P %
Equation 2.86 is reduced by substitution of Eqs. 2.87 2.88 and 2.89 giving

g;(ﬂf")= - a%(/mf“) - —(Pvf“ {Z 9kpx D} a (f& )]
T 5 [Z gkpx DY f;] - % {; grpi(uk — u)(f = f")}
-9 [Z gepx (Ve — v)(fS —fa)] : (2.90)
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When Eq. 2.90 is applied to a solid/liquid system the assumption can be made that diffusion
in the solid is negligible (D = 0). The gradient of fZ may be decomposed into mean and relative

components leading to

Equation 2.90 then reduced to

LS EOUNSNRI: I
a(pf)— - (puf®) - ay(pvf)
d [ e @  a 9 a 9 o
- 5 [0 )] - 5 (oD 5 )
a T a 9 o a _8_ a _8_ o _ ra
- = [ )| - 5 [ 5 G- )
5[
- 3 > gkpk('uk—“)(f;?—fa)}
L £
a [ o o .
- 5 > gepr(ve — 0 - f )] (2.92)
L &
where the mixture mass diffusion coefficient is defined as
D = FD¢ (2.93)

since D% = 0. The last two terms of Eq. 2.92 may be simplified by using the definition of mass-

averaged velocity, 17, mixture density, p, and the mass fraction of ¢, f<, such that

0 J

28 = = g o) = 5 ol

5
9 o . 9 9 .
5 (00 52 0] - 5 [0 5 )]
O [ o @ sa o] - 0 [pe @ o o
- 5 [0 g -] - 5 [orm 55 U - 1)
2 lpfaunf? — phuft — puf?)

9

dy

(pfsvsfs —= pfroifi — pufo] . (2.94)
The last two terms in Eq. 2.94 are non-zero only in the multi-phase region.
For a mixture containing many phases, Eq. 2.94 must be solved for all but one of the constituents,

since one of the concentrations f* may be solved for using species conservation (i.e. y, f* = 1).

For a binary mixture then, Eq. 2.94 only needs to be solved for one constituent.
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2.4.2 Material Properties

Closure of the system of mixture conservation equations requires relationships for phase mass fraction
fx. phase concentration fg, phase enthalpy hx and temperature T'. These relationships are obtained
from material behavior described by the phase diagram, and from thermodynamic relationships for
enthalpy. The required expressions are derived assuming constant specific heats, ¢, and ¢, and
constant latent heat, hy. Further, a linearized phase diagram is assumed.

A eutectic binary system is first considered. Application of the proposed material relationships
for a simpler isomorphous (non-eutectic) binary system follows. Figure 5 shows the linearized binary
eutectic phase diagram.. Several variables characterize the diagram. The slopes of the liquidus and
solidus lines are denoted by m; and m, respectively. The equilibrium partition ration k, is defined

as the ratio of these slopes:

ky = — (2.95)

The eutectic temperature is denoted by T, and the fusion temperature as f* — 0 is denoted by T)p

From the definition of mixture concentration (f* = f,f& + fiff) and the definitions of the
variables that characterize the linearized phase diagram, expressions for the phase mass fraction
fx and phase concentration f{ may be derived. The mass fraction of solid f, for T > T. may be

calculated from

1 T — Tiq
fs = ey [T_Tm] (2.96)

At T = T, the solid mass fraction f; is described by

h - hsol

fs=1 - hf (2.97)
The expressions for phase concentrations are given by
kp
a a 2.98
£ [fs(kp-1)+1} d (2:5%)
£ = ! fe (2.99)
: folkp = 1) + 1

Calculating phase mass fraction and phase concentrations using Eqs. 2.96, 2.98 and 2.99 requires
knowing the temperature T of the mixture. Calculations for phase enthalpy hy also require knowing
temperature. Relationships between mixture enthalpy and temperature meet this requirement. The

enthalpy for the solid phase is described by one expression for Regions i and ii in Fig. 5:
hs=¢s T (2.100)
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where it is presumed that A, = 0 and T = 0. This equation holds on the solidus as well so that
hsol = €5 Tsol (2101)

where Ty is the temperature on the solidus.

The enthalpies of the liquid phase and the mixture must be calculated according to the region
in Fig. 5 in which the mixture belongs. The liquid phase and the mixture enthalpies for Region
ii are discussed here. The temperature remains constant at the eutectic temperature, T¢, until the

enthalpy reaches the value

Tso - Ty
he = hoo + |1 — — ( ‘ “q)} hy (2.102)

1- kp Teol — T

Between this temperature and the liquidus, the enthalpy temperature expression involves solving

for the roots of an expression derived in Appendix A. This expression is based on the definition of

mixture enthalpy between the solidus and the liquidus namely
h = fs hsot + fi hiiq (2.103)
Above the liquidus the mixture enthalpy becomes that of the liquid phase:
hi=al + [(es—c)T. + hy] (2.104)
On the liquidus the above expression becomes
hiq = ¢ Tiq + [(cs —e)Te + hy] (2.105)

Table 2 summarizes the enthalpy/temperature relationships for Region ii of Fig. 5. In the table,

h, is defined by
ho = (¢s —ci)Te = hy (2.106)

For an isomorphous (non-eutectic) binary system or for Region i of Fig. 5 for eutectic system, the
enthalpy/temperature expression must be modified. For low concentrations the non-eutectic system
has a phase diagram, Fig. 6, similar to Region i of Fig. 5 for a eutectic system. The enthalpy in
the solid phase is described by Eq. 2.100 for any system. The liquid enthalpy for the two cases
addressed here is obtained from Eq. 2.104 by replacing T, by Ty, giving

hi=caT + [(Ca - Cl)Tsol h}'] (2'107)

For these cases, Table 2 reduces since there is no such enthalpy range, Ay < h < Ay, since h; may

be effectively replaced by heo. This substitution must also be done for h, in Table 2 so that

ho = (Cs - cl)Tsol + hf (2108)
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Figure 2.5:

Table 2.2: Enthalpy/Temperature Relationships for

Region ii of a Binary Eutectic System

Mixture Enthalpy A Temperature T
h < hsot o
hsa < h < he T,
he < h < hyq rootof AT + BT + C =0
where A=¢ - El’ff;

B:%_L/::Tuq - 1=%, T ¢ Tm—h
C=(hm-ho)Tm + %o__i—:"

h > hjq
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2.4.3 Interfacial Compatability Constraint

The development at this point has not required that the solid/liquid interface be resolved. In some
problems it may be desirable to explicitly resolve the interface. When the solid/liquid interface is
resolved, the temperature and concentration distributions in the phase change material must satisfy
interfacial mass, energy and concentration combatability constraints along the solid/liquid interface.
The equilibrium temperature and concentration of the phase change material is determined ac-
cording to the mixture phase diagram. The concentration of the liquid phase is given by the in-
tersection of the temperature and liquidus lines. The concentration of the solid is specified by the
intersection of the same temperature line and the solidus line.
Energy and species balances applied at the interface lead to further compatability constraints. The
first of these constraints is developed by applying an energy balance on a control volume element as
illustrated in Fig. 7. The heat flow into the interface over time dt from the liquid phase consists of

an advective and a convective component:
or
q=-k dA %1 dt + ViegpdAdt (2.109)
l

where n is the normal to the interface in the direction of the solid and V} is a liquid velocity normal to
the interface which may partly result from density differences due to the change in phase occurring
at the interface. Similarly the heat flow leaving the interface and entering the solid is given by:

oT
Q= = kidA —=| dt + Vie,p,dAds (2.110)
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The difference in energy flows entering and leaving the interface results in a change of energy at the
interface given by

dE = piejdAdn — pse,dAdn (2.111)
where dn represents the displacement of the interface occurring over time dt. Applying an energy
balance at the interface results in

@~ ¢ =dE (2.112)

Substituting Eqs. 2.109- 2.111 in Eq. 2.112 gives

or or
- kl 57; l + Welpl + ks 'a—n' . - Vsesps
= (pie; — pses) %—T; ' (2.113)

The development of the species interfacial compatability constraints is analogous to the above and

results in
aff ofe
—- D { Vi fe s 3 ~ V. fo .
m Dy 8n,+ e + ps D on |, ofe P
o on
= (aft = pufd) 57 (2.114)
Counservation of mass leads to the relation
on
PVi=paVa = (pr = ps) o - (2.115)
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Substituting this equation into Eq. 2.113 gives

oT |
% = sPa(-els) + p.sels‘/i (2116)

3

- G,

where ejs = ej—e;and V; = %, the speed of the interface. Similarly, substituting the mass equation.

Eq. 2.115,into Eq. 2.114 results in

aff
an

ofy
an

- pDy

l + psDs = Vips(=fi3) + psfiVi (2.117)

3
where f = ff - f2.
In Eq. 2.116, e;; may be approximated by the latent heat of fusion, A;. The interfacial com-

patability constraints for mass, momentum and energy are then

on

- a— — —_— :
Vi psVs = (pt = ps ot ( 2.115)
oT oT
-k == 's = - sh s 1 .
10n1+1» on . Vspshy + pshsVi (2.118)
off ofl| _ o oy 5 117
- P(.D{ dn 1 + Pst 8?1 s = - ‘/sps f[s + psflsvz ( 211‘)

Since V; is often very small or zero, the first term on the right side of Eq. 2.118 and the first term

on the right side of Eq. 2.117 may be neglected for many problems.

2.4.4 Boundary Conditions

Boundary conditions in this formulation are applied as a general convective-like boundary condition

for any general dependent variable, . The form is then given by the equation

ks g% =-hy + C (2.119)

where n is the outward normal to the boundary, k4 is the conductivity of ¢, and Ay is the convective
coefficient for the quantity ¢. The variable ¢ could be any of the dependent variables such as T', u, v,
or f{. It is easily shown that through appropriate choice of the constants k4 and C, Eq. 2.119 may

be used to represent Dirichlet and Neumann conditions as well as the more general case as specified.
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Appendix A

In this appendix the relationship for mixture enthalpy is derived for a binary eutectic system in
Region ii shown by Fig. 3, for enthalpies in the range he < h < hyjjq. The definition of mixture

enthalpy states

h = fshs + fihi . (A1)

For a mixture whose temperature and concentration lie between the liquidus and the solidus, the

mixture enthalpy becomes

h= f.s h'sol + fl hliq . (AQ)

To proceed, we must first define each of the quantities on the right side of the above equation. The

solid mass fraction f, is given in terms of the phase diagram variables by Eq. 2.96,

_ 1 T- Tuq]
f’“l—kp [T_Tm ( 2.96)
Further, the liquid mass fraction f; can be calculated from Eq. 2.96 since fi =1 - f;:
_ =1 [Ty =Ty ] ]
f[—l—fs—l_kp[T_Tm + k| . (A3)
The enthalpy of the solid on the solidus is given by Eq. 2.101
hsoi = ¢s Tsol ( 2.101)
The enthalpy of the liquid on the liquidus is given by Eq. 2.105 which can be rewritten as
huq =g Tuq + ho (A4)

where  h, = (¢, —¢;)T. + hy . Substituting Eqs. 2.96, 2.4.4, 2.101 and A4 into Eq. A7 and

rearranging gives

|:Cl _ (ie_— ca] T2+ [(cl"cs)Tﬁq _ kpho —qTm - AT

ks 1=k, - h,
ho, Ty

b (b~ ho)T, + Tia _ g (45)
-k,

The root of Eq. 2.4.4 which is physically realistic gives temperature T', as a function of mixture
enthalpy h for a mixture between the liquidus and solidus in Region ii shown in Fig. 5. This

corresponds to the entry in Table 2 for A, < A < hyiq.
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