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Summary

A computational model is presented for the prediction of solid/liquid phase-chamge energy trams-

port including the influence of free convection fluid flow in the liquid phase region. The computational

model considers the velocity components of all non-liquid phase change material control volumes to

be zero but fully solves the coupled mass-momentum problem within the liquid region. The ther-

mal energy model includes the entire domain and employs an enthalpy-lJke model _nd a recently

developed method for handling the phase-change interface non-linearity. Convergence studies are

performed and comparisons made with experimental data for two different problem specifications.

The convergence studies indicate that grid independence has been achieved and the comparison with

experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualita-

tive data is also provided in the form of velocity vector diagrams and isotherm plots for selected times

in the evolution of both problems. The computational costs incurred are quite low by comparison

with previous efforts on solving these problems.
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Nomenclature

= finite difference coefficients

= right hand side

= specific heat

= transient coefficient

= specific energy

= Fourier modulus

= gravitationai acceleration

= enthMpy

= half-heightof domain

= thermal conductivity

= normal to interface

= pressure

= Prandtl number

= Rayleigh number

= Stefan number

= temperature

= Cartesian velocity components

= interface velocity

= width of domain

= Cartesian coordinates

Greek

Z

_,&

7

F

£

P

= thermal diffusivity

= isobaric compressibility

= change in accompanying variable

= nondimensional domain width

= modified diffusion coefficient

= half-fusion temperature range

= latent heat of fusion

= kinematic viscosity

= density
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Superscripts

c

_, _, rt, $,p

u, v,p, T

ttU, ttp, UV

vp, TT

(*)

= continuity

= geographical molecule location

= _ and v velocity, pressure, temperature

= equgtion of first variable, multiplier

of second variable

= nondimensionaJ

Subscripts

1,2,3

d

e

/

i,j

i

e

?2

r

S

sp

x,Y

= solid, melt, or liquid

= dynamic

= east

= fusion

= discrete iocation

= interracial or dummy variable

= liquid

= north

= reference

= solid, or south

= specified

= working variable, or west

= z or y direction
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Chapter 1

Introduction

The Stefan problem, describing energy transport within a single component, phase change ma-

terial, is intrinsically highly non-linear. This non-lineaxity is due to the compatibility constraints

imposed at the solidification/melt front and involves the energy fluxes and front propagation veloc-

ity at the interface location. However, neither the fluxes, the interface propagation velocity, nor the

interface location itself axe known a priori. As a result of this non-linearity, analytical solutions to

the Stefan problem are difficult, at best, and available for only a few relatively simple configura-

tions [1,2,3,4,5]. For more realistic problem specifications, discrete methods are required to effect

the solution. Traditionally, finite difference or finite element methods have been used; the suitability

and/or methodology of the spectral method has not yet been fully established, the enthalpy method

of Shamsundar and Sparrow is widely used [6].

In the application of the enthalpy model to phase change energy transport problems, the solution

of the algebraic system of equations consumes a considerable amount of computing time. This is at-

tributable to the fact that complete transient histories axe generally required and, more significantly,

to the fact that Gauss-Siedel iteration or an equivalent procedure has been used to solve the equa-

tion system. The requirement for an iterative solution procedure emerges from the highly non-Linear

character of the interface compatibility constraint [7]. In the enthalpy method, the interface location

is not tracked explicitly and its precise location can be resolved only to within one mesh spacing.

The interface non-lineaxity, then, appears in the enthalpy model in the form of a highly non-Linear

equation of state relating enthalpy to temperature. In addition, this non-linear behavior is highly

concentrated within the immediate vicinity of the phase change interface, and is extremely difficult

to accommodate within the context of a simultaneous variable procedure for the equation system [8].



This difficulty is furtheraugmentedin problemsfor whichmorethanonephasechangeboundary

mustbeaccommodatedwithin thedomain.

WilliamsaztdCurry [9] presenteda moreimplicit procedurefor the solutionof the algebraic

equationsystemtbr the caseof one-dimensionalphasechangeenergytransport. In their paper,

theya_testto thedifficultiesinvolvedin solvingphasechangeproblemsandprovidea procedurefor

implementationto multipleinterfaceproblems.They _hieve this throughan energydistribution

techniquein thevicinity ofphasechangeinterfaceswhichleadsto a verycomplexsolutionprocedure.

In addition,extensionof their procedureto morethanonespacedimensiondoesnot appearpossible

[10].Sincethemajorityof problemsof practicalimportanceinvolvetwoor threespacedimensions,

this isa seriousdisadvantageof their procedure.

The numericalsolutionof solid/liquid phasechangeproblemshasbeenconsiderablysimplified

and theassociatedcostsdramaticallyreducedasaresultof the methodproposedby Schneiderand

Rgwill] forone-dimensionalproblems.Thisprocedurehasalsobeenemployedin atwo-dimensional

environmentby ltaw andSchneider[12]with comparablecostreductionsto thoseobservedfor the

one-dimensionalsituation.Costreductionsaretypicallytwoordersof magnitude.All of theabove-

referencedmethodsandapplications,however,havebeenrestrictedto conductionas the modeof

energy_ransportwithoutregardfor buoyancyinducedfreeconvectivemotion.In practice,in terres-

trial situations,it is frequentlythis freeconvectivemotionitselfwhichis the dominantmechanism

for the thermalenergytransport.As such,it is crucialthat this fluid motionpredictivec_pability

beavailablein acomputationalschemein orderto predictenergytransportwith sufficientaccuracy

soasto beof practicalvalue.

Unlikepuresubstances,multiconstituentsystemsdonot exhibit asharpinterfacebetweensolid

and liquid phases. In fact, due to impurities (intentional or otherwise), discrete phase change rarely

occurs in practice. The phase change behavior of such systems depends on many factors including

the phase change environment, composition, and thermodynamic descriptions of specific phase trans-

formations. Moreover, solidification occurs over extended temperature ranges and solid formation

often occurs as a permeable crystalline-like matrix which coexists with the liquid phase.

Since they need not track phase interfaces, single region formulations are well suited for treating

the continuous transition between solid and liquid phases, as well as the evolution of latent energy

over a finite temperature range. Such formulations are generally developed from volume, averaging

techniques based on classical mixture theory. Detailed developments of the theory are available in

the open literature [13]-[18], as are applications to inert systems such as dispersed oil droplets in



waterand fluid saturatedgranularmaterials[19]-[21].The theorieshavebeenextendedto phase

changeprocesses[22]-[24],althoughtreatmentshavebeenrestrictedto one-dimensionaJ,conduction

dominatedconditions.

Whilecontinuumformulationshavebeenshownto providereMisticpredictionsof transportbe-

havior for conduction phase change problems, inclusion of advective components of momentum,

energy and species transfer does not appear to have been considered. Such an extension necessitates

consideration of multiphase region morphology, as well as relative phase velocities. While classi-

cal theories clearly acknowledge the significance of these factors, the desire to maintain universal

generality prohibits description beyond that of symbolic representations. Accordingly, the primary

objective of the present work is to develop a consistent set of continuum equations for the conserva-

tion of mass, momentum, energy, and species in a binary, soLid-liquid phase change system. Emphasis

is placed on casting the equations into forms which are amenable to clear physical interpretation, as

well as to solution by conventional finite-difference or finite-element methods. Although achieving

this objective must come at the expense of a loss of generality, related assumptions and constraints

will be clea_'ly identified and justified on the basis of physical considerations.



Chapter 2

Formulation of the Mathematical

Model

2.1 Binary Mixture Phase Change Problems

In the solid/liquid phase change of pure materials a discrete interface always separates the two

phases. Only solid e.,dsts on one side of the interfacial surface and only liquid on the other. In a

binary constituent phase change system the interface can take two forms. The interface may behave

like that of a, pure material as described above. Frequently however, between the region of solid and

the region of liquid, there is a finite region with liquid finely interdispersed with solid. This region

is often described as being "mushy". Morphologies like this may be caused by supercooled dendritic

growth. Dendrites can _ow into each other creating a solid matrix having pockets or channels of

entrapped Liquid throughout.

If a binary system exhibits a behavior Like that of a pure material, then conservation of mass

and conservation of momentum for the liquid region are described by the familiar two-dimensional

equations
Op
07 + v. (pv) = o, (2.1)

Op (2.2)
O(pU) _ -V . (pV'_) - _ . _ - "_x + pb=, andOt

Op (2.3)o(Pv)ot- -v . (pW) - v . e_- _ + pb_,

where F= and F_ are the stress vectors defined by

= _.x_+ _._ and _ = _ + _) (2.4)



and where b: and by are the per unit volume body force components for the z and y directions

respectively. The energy equation for the liquid portion is

0(pe ) _ -v. (pe V) + v (k VT) (2.5)
Ot

where el represents the specific internal energy for the liquid and kz is the thermM conductivity

of the liquid, internal energy generated by viscous dissipation and compression work have been

neglected. Conservation of energy for the solid region does not need to include convective terms

since the velocity of the solid is assumed zero:

0(ps )
- V. (kVT). (2.6)

Ot

[n a binary system which has a region of interdispersed solid and liquid, the above equations

are not convenient. It becomes impractical to resolve all of the details of the solid/liquid structure

in the mushy region. The mathematical formulation for this phase change situation will be derived

assuming solid and liquid phases can coe.,dst in a locally distributed manner within control volumes

ofdifferential dimensions.

2.2 Phase Conservation of a General Scalar Quantity

2.2.1 Introduction and Definitions

Mass, momentum, energy and species conservation equations are derived in this section for a single

phase within a control volume which may contain more than this one phase. Here phase refers to

either solid or liquid while constituent refers to either a chemicM element or a compound. In this

formulation a constituents within k phases are allowed to occupy any differential volume in space

simultaneously.

The control volumes used in the derivations are shown in Figs. 1, 2, and 3 with discrete interfaces

separating solid from liquid. The precise location of the phase interfaces will generally not be known

but the volume fractions of solid and of liquid will be used to characterize the state of dispersion at

any location.

Some nomenclature relating to the distribution of solid and liquid must be defined before pro-

ceeding. The mean velocity of the constituents comprising phase k relative to a fixed reference frame

is denoted by Vk. The volume fraction of constituent a in phase k, that is, the volume occupied

by constituent a divided by the volume of phase k which contains the volume of constituent a, is

5



denoted by g_. Similarly the volume fraction of phase k, that is the volume occupied by phase k

divided by the volume over which g_ is evaluated which may be partially occupied by other phases,

is denoted by gk. The actual density of constituent a in phase k is denoted by p_.. This density is the

same that would be determined from a sample of constituent a removed from phase k. The actual

density of phase k is denoted by Pk and describes the mass per unit volume of a volume containing

only phase k. It should be noted that the sum over all phases of gk gives the result

Egk = 1. (2.7)
k

The partial density of constituent a in phase k, denoted by 2,Pk, describes the mass of constituent a

contained by a volume occupied only by phase k, divided by that volume. This volume may contain

other constituents than just constituent a.

actual density:

A mathematical expression relates partiM density to

The partial density of phase k, denoted by P-h, describes the mass of phase k in a volume which may

contain phases other than phase k, divided by that volume. Mathematically p-_, is defined by

]_ = gkPk. (2.9)

In a manner analogous to Dalton's rule of partial pressures, here the sum of all partial densities at

a location represents the actual density

where p denotes the actual density.

p = Ep- 
k

The mass fraction of constituent a in phase k, f_', is related to the partial density of constituent

a in phase k, p-_, by

Pk

This mass fl'action represents the mass of constituent a in a volume entirely occupied by phase k

divided by the mass of the entire volume. The mass fraction of phase k, fk, is defined as

fk- P-k (2.12)
EkP-k

the mass of phase k in a volume partially occupied by other phases divided by the mass of the total

volume.

The conservation of a general quantity ¢ for a single phase k, Ck, is derived here in a Cartesian

coordinate framework for a two-dimensional control volume containing a mixture of phases. The
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Figure 2. i:

control volume contains two phases with the total interfacial surface between the phases denoted by

Ar as shown in Figure 1. For convenience the bottom left corner of the control volume is located

at (z0, y0). The total volume A-Y- includes l_oth solid and Liquid portions and is the product of the

width Ax and the height '__kysince unit depth is considered.

The general conservation principle is given in words by

Time rate of change of

Ok in volume occupied

by phase k

(T1)

Net flow of ¢ across

phase k portion of control

faces

(T2)
(2.13)

+ Net flow into phase k + Source of Ck in

across interracial surface phase k volume.

(T3) (T4)

These four terms, the accumulation term (T1), the control face flow term (T2), the interfacial flow

term (T3), and the source term (T4) will be treated individually in the subsections that follow.

Expressions will be determined for a control volume of differential dimensions and the Limiting result

per unit volume will be presented as the control volume dimensions are shrunk to zero.



2.2.2 The Accumulation Term

Thesymbolicrepresentationof the accumulationterm(T1) is givenby

(2.14)

;, .

" #,

i -_£'_) , /f

, "_=_'(_j" .

Figure 2.2:

where 0"_ is the portion of the control volume occupied by phase k. In Cartesian coordinates this

integration could be viewed as an integration between two curves, say zt(y) and z2(y), or yt(x) and

y2(z), as shown in Figure 2. The integral part of the accumulation term can then be written in the

fOrlllS

f._k(p_¢_)dv= -_0[°+_,:././1":_¢_/(P_)_:dY

Performing a Taylor series expansion of the integra_ld about (xo, No) gives

f°+"'/"<"+J, J_t(y)

+_y(PJ,¢k) o(Y-Yo)+-..] dxdy. (2.16)

By bringing constants out of the integral and adjusting the limits, the above expression may be

simplified to

i%(p_¢k)d'V= (pkCk)[O A_dk + _---_(pkvhk) ]o .'_oi_°+A_J;_(v)[*2(Y)(:r- zo)dzdy + ff'_y(PkCk)]o



f=xo+,a=[y2(=)(y_ yo)dydz ÷... (2.17)
o Jy1(=)

It can be shown that all terms except the first one become zero when Eq. 2.14 is divided by A_r" =

_kxAy and the limit is taken as Ax, Ay -- 0. The second term is considered below, although similar

treatment applies to the third and all higher order terms.

A new variable representing the local range of z-direction integration is introduced by the defi-

nition

5z(y) = z_(y) - zl(y) (2.18)

Incorporating this definition we have that

f_2°+A_ [_,,'(y) + -= (=,(y) ey. (2.19/

The terms 5z(y) and (zl(y) - zo) are both of the same order of size as _kx and can be expressed as

fraction of the control volume width Ax in the form

5z(y) = Rl(y)Ax and xl(y) - xo = R2(y)Ax. (2.20)

With substitution of these definitions the above equation becomes

°(p,_k) Io J_,u,l

_2°+"_ )n='] dy. (2.2,)= O(p,¢,) t0 [_n_(,)n,'+n,(,)R,(,

It is convenient to define
1

f(y) =- -_R_(y) + R,(y)R2(y) (2.22)

such that the integrand is now Az,2f(y). The mean value theorem for integrals states that if f(y) is

continuous in [Yo, Yo + Ay], then there exists some point _ in (Y0, Y0 -I- Ay) such that

_o+a_ f(y)dy = Ayf(,_). (2.23)
0

Using this result we can now write

O(p_)lonx2._ayF°+_'_f(y)dy=O(p_)lonx2,ay.f(4); yo < _ <_uo+ny. (2.24)
J Y0



The range of R1 and R2 is 0 _ RI _< [ and 0 ___R2 _<2. Further, both R1 and R2, and hence f(_),

are independent of ,..%zand &y. If this term is now divided by &'Y- = &x&y and the limit is taken

as .._%x,_y -- 0, the result is

_z [ '"z2_ _z lim &z = 0. (.2.25)_,-olim (PkCk) o &z&y f(() = (Pk¢a) ]of(_) &z--o
_y--0 ,xy--0

in a similar manner all terms in the Taylor series except the first reduce to zero when this limit

is taken. Thus the only contribution from the accumulation term, T1, is

0 ,5-¥-k (2.26)
TI = _(P_¢k)Io _'_'"

so that theThe volume ratio of the liquid volume to the total volume as defined earlier is gk =

accumulation term is finally #yen on a per unit volume basis by

O
T1 = _-_(gkPJ,¢k)[0. (2.27)

2.2.3 The Control Face Flow Term

,'r-

L I

Figure 2.3:

The term representing the flow across the portion of the control face occupied by phase k, T2, is

shown by Figure 3 to have four contributing components, one at each of the control faces. In symbolic

form the net flow of ¢ is given by

(2.28)

10



Consideringthe z-component, a Taylor series expansion can be performed about z0 _ving

[ AzdJ_:12d2Jr ]J= - J=+a= = J= - J= + dz I=o+ -_.Az _ I=o+"" (2.29)

Note that the flows considered here are only those associated with phase k. The effective portion of

the control faces for which there is a flow of Ck can be given by the ratio R times the actual area of

the respective control faces. For the z-component flux the effective area is then R= • 1 • ,49 so that

the flow itself becomes

J= = 1.AyR=j= (2.30)

where j_ is the average flux over the actual area of the control volume surface occupied by phase h:.

The net z-component flux term is then given by

- = -Az yO<R* )10- + ... (2.31)

Dividing the z-component flow term by AN = Azciy, and taking the limit as Az, Ay -- 0

reduces the term to

lira __(J=- J,+,.x=)= .-_z(R_J=). (2.32)
Am--O
Ay---*0

The y-component flow term similarly reduces to

lim (Jy - Jv+au) -- "_y(RvJu) (2.33)A_:_0

Aye0

The control face flux term (T2) for phase k is then

r2=-°(R+)Io- (23 )
Oz uy

where R= and /_y are the effective ratios of areas for phase k flows at the control faces, and j= and

ju axe area averaged fluxes of the actual areas occupied by phase k.

2.2.4 The Interfacial Flow Term

The flow of Ck across the phase interface surface is defined by

T3 = f, jk, " ff dd (2.35)
JA I

where jk_ is a flux across the interface and E is the normal to the interface directed into phase k.

Beyond this representation, the interfacial ftux term will not be specifically evaluated because later

in the development this terra is cancelled by a similar term associated with another phase. For

convenience this term is denoted by

T3 = Ii . (2.36)

11



2.2.5 The Source Term

Thesourcetermis symbolicallyrepresentedby

T4 = f. Sk d-_" (2.37)
k

where Sk is a per unit volume source variable. The only specific form for S_ that will be considered

is the body force in the momentum conservation equation. By a procedure similar to the one used

to reduce the control face flow term, the source term may be reduced to

T4 = (g_ Sk)t0 (2.38)

2.2.6 Composed Equation for Phase Conservation of a General Scalar Quantity

The terms have been derived for the conservation equation of a general scalar quantity ¢ for a single

phase k, Ck, for a control volume of differential size containing a mixture of phases. Substituting

these terms (TI - T4) into Eq. 2.13 gives

o_(gkPk_) to= - (R_j_) lo- _(-_J_) Io+ + Io, (2.39)
uy

-/L" -" i

;-y:j :i 1
r r

-" • . -

. i

z / \\\\

• //

\ /
/ . . -:2

Figure 2.4:

[n order to simplify this equation, an assumption is made about the effective area ratios/_, and R_.

Figure 4 shows two cases in which the volume fraction of phase k, gk, is equal to the effective area

ratios R_ and R_. The assumption will be made here that

R_ = R_ = g_ (2.40)

12



since in some cases it is true and since it is reasonable. Equation 2.39 now simplifies to

0

Because the control volume has been reduced so differential size and the balance used in its

derivation must apply for any choice of (z0, Yo), the above equation can now be written as

5 oO(gkPkCk) -- (gkJz) - .-5--(gkJy) + Ii + gkSk. (2.42)
ay

2.3 Phase Conservation Equations for Mass, Momentum, Energy

and Species

Equation 2.42 represents the conservation of a general scalar quantity ¢ for a single phase k, Ck,

for a control volume containing a mixture of phases. The scalar quantity Ck, and the flux terms j_

and jy are specified in this section for the conservation equations for mass, momentum, energy and

species.

2.3.1 Mass

The conservation of mass equation can be obtained from 2.42 with ¢ = 1, jx = pkuk, jy = pkv_, and

[_ = f/l_ giving
0

where _'_k represents the contributions of mass flow into the phase k portion of the control volume

across the phase interface AI.

2.3.2 Momentum

The statement of x-momentum conservation cam be obtained from Eq. 2.42 with Ok = uk, j: =

pku_ - rk_ + p, j_ = pkukvk -- rk_, [i = Gk_ and _'I, = Pkg,. That is

O (gkPkUk) 0 2 0---_X[gk(pkuk --rkz= + p_)] - -_y[gk(pkukvk --rk_=)]+ Gk= + gkPkg= (2.44)

where Gkz represents the production of momentum due to movement of the phase interface, g= is

the z-component of the gravity vector, and Pk is the pressure associated with phase k.

The classical Newtonian constitutive equations need to be modified here due to spatial variations

[n _he phase volume fraction. Bennon and Incropera [25] define the dilation rate of phase k as

13



_7 . (gkVh) on a per unit volume of mixture basis. This was done to maintain consistency with the

conservation of mass equation, Eq. 2.43. In their definition of dilation rate these authors use gkV_, for

the velocity terms as they arise in the mass conservation equation. Following Bennon and Incropera,

any occurence of a velocity component will be replaced by g_ times the velocity component. With

this requirement the constitutive equations for phase k are then given by

a_d

_O(gk_k) a(gkUk)]
gkr_: = #hi -_z + _y '

(2.45)

The statement of y-momentum conservation follows directly from Eqs. 2.44 and 2.45 with the z

and y subscripts, and the velocity components permuted. The y-momentum conserv_,tion equations

are given by

0 0

0_(_p_ _k)= - _ [gk(p__ -

[0(gk_k) 0(gk_) 1 andgkvkz_ = gkrk_z = #_, 0"--'--_ + Oy '

I iv. (gj_)+gkr_v_ = 2#k -3

+Gk_ + gkPkgu, (2.46)

(2.47)

2.3.3 Energy

The conservation requirement for energy can be obtained from Eq. 2.42 with Ck = ek, jz = pku_e_ -

k aT_,-5-_z,Jy = p_,v_,el, - kk-_ and Ii = _:_ yielding

OT

._'_(gkp_ek) = Ox

Here e_ is the specific internal energy of phase k, that is the internal energy of a volume containing

only phase k divided by the mass of that volume. Also kk is the thermal conductivity associated

with phase k and E_ represents the energy flow into phase k across the phase boundary, which is

partially due to movement of the phase interface.

2.3.4 Species

The conservation of species equation can be obtained from Eq. 2.42 with ¢_, = f_', jz = pku_,f_ -

^. nc'_l-_ j_ = pkvkf_ - pi, D and /_ = Hence

14



+

of_. )0 gkpkvkf_ -- gkpk19_ --_yOy

M_

(2.49)

where D? is the Fickian mass diffusion coefficient associated with the diffusion of constituent (_ in

phase k across the phase boundary due to the movement of the phase interface.

2.3.5 Summary

_iass, momentum, energy and species conservation equations for a single phase k in a mixture of

phases, Eqs. 2.43, 2.44, 2.48 and 2.49, axe conveniently summarized in Table i. The individ-

aal conservation equations are formed by substituting the terms in the body of the table for the

corresponding term in Eq. 2.42 indicated by the appropriate column heading.

Table 2.1" Summary of Conservation Equations for a Single Phase

E

Mass

z-Momentum

y-Momentum

Energy

Species

PkUk

pku_ + rk_x + p_

pkukvk + rkxy

]¢, OT
pkukek -- k-_

Jy

pkVk

pkUkVk + Tku::

pk v_ -- rkyy + Pk

pkVkek -- kk"_y

2.4 Continuum Conservation Equations

Closure of the system of conservation equations for a binary mixture solid/liquid phase change

problem requires fewer equations than the number of solid and liquid phase equations implied in

15



Section 2.3. By adding like solid and liquid phase conservation equations together, the number of

equations to be solved is reduced. The system of conservation equations is closed by relationships for

phase mass fraction f_ and composition fff which are discussed in Section 2.4.2, Material Properties.

The continuum equations formed by summing over the phases are simplified in this section by

invoking the definitions of fractional quantities, Eqs. 2.8 - 2.12, and by introducing physically

realistic assumptions for a solid/liquid phase change system.

2.4.1 Mass

Summing the mass conservation equations for a phase k, Eq. 2.43, over all phases results in

8p 0 0
ot - o-7(p_)- _(;v) (2.50)

where p, a and v are the mass averaged quantities of density, u-velocity, v-velocity as defined by

Eq. 2.10 and by

P

where 17 is the mass averaged velocity vector. The sum of the terms representing the flows of mass

across the phase boundaries is zero (_k ._I_ = 0), since continuity requires that these flows, being

internal to the control volume, occur at each other's expense.

Momentum

The statement of x-momentum conservation for a mixture is obtained by summing the x-momentum

conservation equation, Eq.

0( )0-_ _ gkPk_ =
k

2.44, over each phase. This gives

0

0-_ k gk rkvz

+ E + E 9 p gx
k k

O-ZO (_ gkpkU_V_)

(2.52)

This equation may be simplified by using the definitions for average fluid quantities and by

introducing new variables. By the definition of mass-averaged velocity, Eq. 2.51, the term on the

teft side of Eq. 2.52 becomes _(pu). The advective fluxes on the right side of the equation can be

16



decomposedinto meanand relativecomponentsfor eachphase.Thebracketedquantityof the first

term on the right sidemaybedecomposedto _ve

_gkp_ = p_'_+ _gkp_(u_- _)_ (2.53)
k k

by using the definition for mixture density, p, and mass-averaged velocity, _7. The fourth term on

the right side may be similarly decomposed giving

_ g_pk,_v, = p_v+ _g_p_(,_ - ,)(vk - ,). (2.547
k k

Often the relative components in Eqs. 2.53 and 2.54 may be neglected depending on the charac-

teristics of the problem. The pressure term may be simplified by defining

p = _ g_p_ (2.55)
k

By using the definition of mixture density p, the gravity term in Eq. 2.52 becomes

By incorporating Eqs. 2.53, 2.54,

Eq. 2.52 becomes

0

0_(pu) = _

gkP_g= = Pgx (2.56)

2.55 and 2.56, and the constitutive equation for stress Eqs.

ap

Ox

2.45,

+ _ G_ + pg_. (2.57)
k

At this point, physically realistic assumptions for a solid/liquid phase change system will be made

so that Eq. 2.57 may be simplified. The convective terms Eqs. 2.53 and 2.54 will be addressed first.

Two new variables representing the u- and v-velocity components of the liquid relative to the solid,

are introduced here by the definitions

(2.58)Ur -- Ul - u_ and Vr -- vl- v,

By algebraic manipulation and by use of the above definitions Eqs. 2.53 and 2.54 simplify to

(2.59)
Oz Oz

17



0 0

ay [a_p_(ut- _)(v_- _) + g,p,(u, -_)(v, - _)] - au (af, fzu, v,) ,12.60)

Tile stress terms may also be simplified for a solid/liquid system. It is assumed that the solid

does not contribute to x-momentum through internal stresses. This requires

(2.61)

With this assumption the stress terms in Eq. 2.57 become

It is further assumed that the local density gradients are negligible, that is

0
The divergence of velocity, can be simplified using the assumption in Eq.

V.9=V •

Using the assumption stated in Eq.

2.64 so that

2.61, this expression becomes

(2.64)

(:2.65)

P_tv. = v.(9_v).
P

Similarly the partial derivatives become

Oglut pl Ou
q

Oz p Oz

Ogtvt Pt Ov
m

8y p Oy

Ogtut pl Ou

Oy p Oy

Substituting Eqs. 2.67 - 2.69, the stress terms, Eqs. 2.62 and 2.63 become

0 [ ( 1 Ogtu,'_] 0 [ (_pV.17 + p Ou)]0-7 2_ -_v.(at_) + -g2-_J] = _ 2._ - p_ p_

o_ #'k o_ + oy jj = N #z pt _ + N

By assuming constant viscosity, the above equations sum to

2_ v. 9 + + - + = u_-
1 02v

+
30zOy

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

±]
+ oy=]
(2.72)

18



Substituting Eqs. 2.59, 2.60, 2.66 _nd 2.72 in Eq. 2.57 gives

opu op v i4 i l
at - oz oy + _ m L3 oz _ + 30=Oy + -_y2j

Op 0 (pfsfiu_)- 0
Ox Oz -_y (pf_fiu, u,.)

k

The fifth and sixth term on the right side of Eq.

(2.73)

2.73 are non-zero only in multiphase regions, where

relative phase velocities are very small. Consequently these terms often may l_e neglected.

The last term on the right side of Eq. 2.73, _ G_:, represents the production of x-momentum

due to movement of the interface and shear stress at the phase interface. The former effect may be

neglected for most physically realistic problems. Bennon and lncropera [1] proposed that Darcy's

law could be used to approximate the latter effect. Darcy's law models the force on a liquid flowing

through a solid porous media such that

F_ = #._L(glu,) (2.74)
If=

where K_ denotes the permeability in the x-direction. Knowledge of themorphology of the solid/liquid

interface is necessary to determine the suitability of this model as well as the coefficient [(_:

The equation for y-momentum conservation can be obtained from equation 2.73 by permuting

the subscripts and exchanging v for u. This equation then becomes

o _ p[_ 02v 102u o=v]
Ot - ?)z p¢ Oy 2 30zOy "_z2 J

(2.75)

Op 0 o

+ Pg_+ EG_"
k

Energy

The statement of energy conservation for a mixture is obtained by summing the energy conservation

equ_ttion for phase k, Eq. 2.48, over all phases, giving

O
O_ (gkpk_,kek)- kk

_-y (gkpkv_ek) - kk -_y

where the mixture conductivity is defined by

(2.76)

(2.77)
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The sumof the termsrepresentingenergyflow into a phasedueto interfacemovement,_k /_k, is

zero since the exchange of energy represented by this sum is internal to the control volume. The

advective contribution can be decomposed in a manner similar to that for the x-momentum equation

giving

where the mixture enthalpy is defined by

(2.78)

(2.79)

1
h =_- _ gkpkh_ .

P k
(2.s0)

In the above equations, specific enthalpy h is assumed to be a suitable approximation of specific

interna_ energy e. Substituting Eqs. 2.78, 2.79 and 2.80 into Eq. 2.76 yields

(ph) = - (p_h) - _ (p,h) + _ + k

0

0
(2.s_)

The temperature T can be eliminated from this expression by using the relation between temperature

and enthalpy

//hk= ckdT + h°k, (2.82)

and the identity

__ 1 1VT= 1 Vh}=-- V_h + -- V(hk-h). (2.83)
ck Ck ck

2.81 then becomesHere ck represents the specific heat of phase k. Equation

0

Oz [_ gkpk(u_- u)(h_-h)]

Oy
(2.s4)

2O



Equation2.84maybe rewrittenspecificallyfor a solid/liquidsystem.The bast two terms can

be reduced by using the definitions for mass-averaged velocity, 17, mixture density, p, and mixture

enthalpy, h. This equation becomes

0 0 0 o (h, - h)]
2

0
Oz _of_ush, + pfvu_hl - puh]

0

c)y [pLvsh_ + pfvvlht - pvh] . (2.85)

The last two terms of Eq. 2.85 are non-zero only in the multi-phase region.

Species

The species conservation equation for a mixture is obtained from Eq. 2.48 by summing over each

phase. Hence

"_x gkpkukf_.

0 gkpkvkf_
Oy - g_pkD_ oy Jj

(2.86)

The term in Eq. 2.48 representing transport of specms a into phase k across the phase boundary,

f4k, does not appear here beta, use this transport, being internal to the control volume, is zero due

to mass continuity. The advective contribution may be decomposed such that

gkpkukf_. = puff* -4- _ gkpk(uk - u)(f_ - f_)
k k

k k

Where the mixture concentration of species a is defined by

f_ = i E g,pdg •
P

Equation 2.86 is reduced by substitution of Eqs. 2.87 2.88 and 2.89 giving

(pf_) - (puff') - .-__.(pvf ) - gkpkD_ (f_)

0

0

oy ] o, gkPk(u_- _)(I_ - I°)

(2.87)

(2.88)

(2.89)

(2.90)
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When E q. 2.90 is applied to a solid/liquid system the assumption can be made that diffusion

in the solid is negligible (D_ = 0). The gradient of f_' may be decomposed into mean and relative

components leading to
0 0 0

0--_ (f_) = 0"_ (f_) + _xx (f_ -f_)' and

0 0 0

O-'-y(f_) = _ (f_) + _ (f? - f_)"

Equation 2.90 then reduced to

(2.9_)

0 _ 8 0
_(Pf )= - _zz (puF) - -_y (pvf _)

0 0 ] 0Oz pDa _x (f_) Oy

0 0 ]

P _

gkpk(u_ - u)(f_. - ff')t
C)Z k:

o ]oy _ gkPk(,_- u)(lZ- f°)
k

0 (/a)]PDa "_y

0 _/_)]0 [pD.__y (f[_

(2.92)

v_here die mixture mass diffusion coefficient is defined as

D = FtD_' (2.93)

since D_ = 0. The last two terms of Eq. 2.92 may be simplified by using the definition of mass-

averaged velocity, V, mixture density, p, and the mass fraction of a, f_, such that

0 0
0-7 (P/_)- oz

0

Ox

0

Oz

8

Oz
0

Oy

0

(puff') - _ (pv f c')

o (1o)] o(;D _ 0v

o /_)][(pD_ -_x (f? -

0 (fc,)](pD _y

° [(pm ° /°)]0y _ (Z-

Lof_u_f_ - pflutf_ - puf _]

0 Ol --_o/, sf, pflvtf_ - pvff']. (2.94)

The last _wo terms in Eq. 2.94 are non-zero only in the multi-phase region.

For a mixture containing many phases, Eq. 2.94 must be solved for all but one of the constituents,

since one of the concentrations f_ may be solved for using species conservation (i.e. _2_ f_ = 1).

For a binary mixture then, Eq. 2.94 only needs to be solved for one constituent.
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2.4.2 Material Properties

Closure of the system of mixture conservation equations requires relationships for phase mass fraction

f_, phase concentration f_, phase enthalpy hk and temperature T. These relationships are obtained

fi'om material behavior described by the phase diagram, and from thermodynamic relationships for

enthalpy. The required expressions are derived assuming constant specific heats, cs and ct, and

constant latent heat, hi. Further, a linearized phase diagram is assumed.

A eutectic binary system is first considered. App].ication of the proposed material relationships

for a simpler isomorphous (non-eutectic) binary system follows. Figure 5 shows the linearized binary

eutectic phase diagram. Several variables characterize the diagram. The slopes of the liquidus and

solidus lines are denoted by rnt and ms respectively. The equilibrium partition ration kp is defined

as the ratio of these slopes:

T}2 l

kp - (2.95)
Tit s

The eutectic temperature is denoted by :F_ and the fusion temperature as f_ -- 0 is denoted by T,_

From the definition of mixture concentration (f'_ = f_f_ ÷ flfF) and the definitions of the

variables that characterize the linearized phase diagram, expressions for the phase mass fraction

f} and phase concentration f_' may be derived. The mass fraction of solid f_ for T _> T_ may be

calculated fl'om

fs- t_kv -T.,J

At T = T_ she solid mass fraction f_ is described by

(2.96)

h -- hsol
A = 1 (2.97)

h f

The expressions for phase concentrations are given by

k,, ]If= A(k -l)+i (2.98)

1 ] f_/_= A(kp-i)+i
(2.99)

Calculating phase mass fraction and phase concentrations using Eqs. 2.96, 2.98 and 2.99 requires

knowing the temperature T of the mixture. Calculations for phase enthalpy hk also require knowing

temperature. Relationships between mixture enthalpy and temperature meet this requirement. The

enthalpy for the solid phase is described by one expression for Regions i and ii in Fig. 5:

h, = c, T (2.100)

23



where[t is presumedthat hs = 0 and T = 0. This equation holds on the solidus as well so that

hsot = c, Tsol (2.101)

where Tsol is the temperature on the solidus.

The enthalpies of the liquid phase and the mixture must be calculated according to the region

in Fig. 5 in which the mixture belongs. The liquid phase and the mixture enthalpies for Region

ii are discussed here. The temperature remains constant at the eutectic temperature, Te, until the

enthalpy reaches the value

ho=hsoL + 1 1-_p Tso_ T£]] hi (2.102)

Between this temperature and the Iiquidus, the enthalpy temperature expression involves solving

[or the roots of an expression derived in Appendix A. This expression is based on the definition of

mixture enthaipy between the solidus and the liquidus namely

h : f_ hsol + fl huq (2.103)

Above the liquidus the mixture enthalpy becomes that of the liquid phase:

hi :clT + [(c,- ct)Te + hi] (2.104)

On tile liquidus the above expression becomes

huq = c_ Tliq + [(c_- cl)Te + h f] (2.105)

Table 2 summarizes the enthalpy/temperature relationships for Region ii of Fig. 5. In the table,

ho is defined by

ho = (c, - c_)T_ = hi (2.106)

For an isomorphous (non-eutectic) binary system or for Region i of Fig. 5 for eutectic system, the

enthalpy/temperature expression must be modified. For low concentrations the non-eutectic system

has a phase diagram, Fig. 6, similar to Region i of Fig. 5 for a eutectic system. The enthalpy in

the solid phase is described by Eq. 2.100 for any system. The liquid enthalpy for the two cases

addressed here is obtained from Eq. 2.104 by replacing T_ by T_I giving

h_ = c_T + [(c, - cz)T_o_hJ (2.107)

For these cases, Table 2 reduces since there is no such enthalpy range, h_ol _< h _< ht, since ht may

be effectively replaced by h_oi. This substitution must also be done for ho in Table 2 so that

ho = (c, - ct)Tso_ + hi (2.108)
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Figure 2..5:

Table 2.2: Enthalpy/Temperature Relationships for

Region ii of a Binary Eutectic System

Mixture Enthalpy h Temperature T

h < hso I

hsol < h _< he

he < h < hliq

h >_ hHq

.k

T_

rootof AT 2 + BT + C =

where A=cl - 1-kp

B _ ko ho Ci Tm- h
= l-k;, Tliq 1-k_

C=(h,_-ho)Tm +
1-kp

h-h_._.Co
Cl
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2.4.3 Interfacia| Compatability Constraint

The development at this point has not required that the solid/liquidinterfacebe resolved. In some

problems it may be desirable to explicitlyresolvethe interface. When the solid/hquid interfaceis

resolved,the temperature and concentration distributionsin the phase change material must satisfy

interracialmass, energy and concentration combatability constraints along the sohd/llquid interface.

The equilibrium temperature and concentration of the phase change material is determined ac-

cording to the mixture phase diagram. The concentration of the liquid phase is given by the in-

tersectionof the temperature and liquidus lines.The concentration of the solidis specifiedby the

intersectionof the same temperature Hne and the solidusline.

Energy and species balances applied at the interfacelead to further compatability constr_nts. The

firstof these constraintsisdeveloped by applying an energy balance on a control volume element as

illustratedin Fig. 7. The heat flow into the interfaceover time dt from the liquidphase consists of

an advective and a convective component:

o_T tql = - kl dA "_n dt + VtelpldAdt (2.109)

where n is the normal to the interface in the direction of the solid and Vt is a liquid velocity normal to

the interface which may partly result from density differences due to the change in phase occurring

at the interface. Similarly the heat flow leaving the interface and entering the solid is given by:

qs = - ksdA O--_ns dt + Vsesp, dAdt (2.110)
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Figure 2.7:

The difference in energy flows entering and leaving the interface results in a change of energy at the

interface given by

dE = pleldAdn - psesdAdn (2.111)

where dn represents the displacement of the interface occurring over time dt. Applying an energy

balance at the interface results in

ql - as = dE (2.112)

Substituting Eqs. 2.109- 2.111 in Eq. 2.112 gives

07n l _n _ - V_esp s-kt + Vlelpt + k_ OT

an
= (pier - p,e,) _ (e.113)

The development of the species interracial compatability constraints is a_a_ogous to the above and

resultsin

- PtDt On _ + VJ_'pl + p, D, On

On

= (p.fF- p,.fT)

Conservation of mass leads to the relation

On

ptv_- p,v, = (p_- ps)_ •

(2.114)

(2.11_)
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Substitutingthis equationinto Eq. 2.113gives

OT I aT- & _ + _' On, = V,p,(-e_s) + p,e_,V{ (2.ii6)

where ets : el - e, and Vi : a,_ the speed of the interface. Similarly, substituting the mass equation."ST,

Eq. 2.115, into Eq. 2.114 results in

Of_ Of_ = Y,p,(-f,_) + p,fi_V, (2.117)
- plDt On I + p,D, On ,

where fl_ = f? - fY'

In Eq. 2.116, ez, may be approximated by the latent heat of fusion, h i. The interracial com-

parability constraints for mass, momentum and energy are then

On

pt_ - ,,,_4 = (pt- p,) -aT (2.1zs)

- k_ aT + _" -$7n = -V'P'hs + p, hsV{ (2.11S)

os;- p_Ol On _ + ;,D, _ = - V,p, S_ + p,f_,_'i (2.zlr)

Since k] is often very small or zero, the first term on the right side of Eq. 2.118 and the first term

on the right side of Eq. 2.117 may be neglected for many problems.

2.4.4 Boundary Conditions

Boundary conditions in this formulation are applied as a general convective-like boundary condition

for any general dependent variable, ¢. The form is then given by the equation

0¢
k¢ _nn =- he + C (2.119)

where n is the outward normal to the boundary, k¢ is the conductivity of ¢, and he is the convective

coefficient for the quantity ¢. The variable ¢ could be any of the dependent variables such as T, u, v,

or f_'. It is easily shown that through appropriate choice of the constants he and C, Eq. 2.119 may

be used to represent Dirichlet and Neumaan conditions as well as the more general case as specified.
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Appendix A

In this appendix the relationship for mixture enthalpy is derived for a binary eutectic system in

5, for enthalpies in the range he < h _< huq. The definition of mixtureRegion iishown by Fig.

enthalpystates

h = Lh_ + f_ht. (_1)

For a mixture whose temperature and concentration lie between the tiquidus and the solidus, the

mixture enthMpy becomes

h = f_ hsol + fl hllq • (A2)

To proceed, we must first define each of the quantities on the right side of the above equation. The

solid mass fraction f, is given in terms of the phase diagram variables by Eq. 2.96,

f_ - 1 - kp = _-_j (2.96)

Further, the liquid mass fraction fl can be calculated from Eq. 2.96 since fl = 1 - fs:

The enthalpy of the solid on the solidus is given by Eq, 2.101

hsol = cs T_o] (2.101)

The enthalpy of the liquid on the liquidus is given by Eq. 2.105 which can be rewritten as

hllq - cl Tllq + ho (A4)

where ho = (c_ - cl)T, + h I . Substituting Eqs. 2.96, 2.4.4, 2.101 and A4 into Eq. A7 and

rearranging gives

T

hoTr_q (AS)+ (h-ho)T,,, + - 0
1 - k_,

The root of Eq. 2.4.4 which is physically realistic gives temperature T, as a function of mixture

enthalpy h for a mixture between the liquidus and solidus in Region ii shown in Fig. 5. This

corresponds to the entry in Table 2 for he < h < hliq.
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