12 research outputs found

    Methanotrophic bacterial symbionts fuel dense populations of deep-sea feather duster worms (Sabellida, Annelida) and extend the spatial influence of methane seepage

    Get PDF
    Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ¹³C of −44 to −58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of ¹³C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150–million year–old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation

    Methanotrophic bacterial symbionts fuel dense populations of deep-sea feather duster worms (Sabellida, Annelida) and extend the spatial influence of methane seepage

    Get PDF
    Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ¹³C of −44 to −58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of ¹³C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150–million year–old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation

    Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes

    Get PDF
    BACKGROUND: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially, but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional and functional adaption of human and murine mononuclear phagocytes (MNP). METHODS: Using Seahorse technology, pulsed stable isotope-resolved metabolomics and enzyme activity assays we characterize the central carbon metabolism and mitochondrial function of human and murine MNP under HS in vitro. HS as well as pharmacologic uncoupling of the electron transport chain (ETC) under normal salt (NS) is used to analyze mitochondrial function on immune cell activation and function (as determined by E.coli killing and CD4(+) T cell migration capacity). In two independent clinical studies we analyze the impact of a HS diet over two weeks (NCT02509962) and short-term salt challenge by a single meal (NCT04175249) on mitochondrial function of human monocytes in vivo. RESULTS: Extracellular sodium was taken up into the intracellular compartment followed by the inhibition of mitochondrial respiration in murine and human macrophages (MΦ). Mechanistically, HS reduces mitochondrial membrane potential, ETC complex II activity, oxygen consumption, and ATP production independently of the polarization status of MΦ. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like MΦ and diminished CD4(+) T cell migration in HS-treated M2-like MΦ. Pharmacologic uncoupling of the ETC under NS phenocopies HS-induced transcriptional changes and bactericidal function of human and murine MNP. Clinically, also in vivo rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both, a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of ̃x = 2mM and ̃x = 2.3mM, respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. CONCLUSIONS: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. While these functional changes might help to resolve bacterial infections, a shift towards pro-inflammation could accelerate inflammatory CVD

    More is needed — Thousands of loci are required to elucidate the relationships of the ‘flowers of the sea’ (Sabellida, Annelida)

    No full text
    Dataset used to reconstruct the phylogenetic relationships among Sabellida (Annelida). The datasets comprise transcriptomic matrices, species trees (ASTRAL and concatenated supermatrix) and gene trees used for data exploration (DiscoVista input and results).THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Phylogenomics resolves ambiguous relationships within Aciculata (Errantia, Annelida)

    No full text
    Dataset used to reconstruct the phylogenetic relationships among Aciculata (Annelida). The datasets comprise transcriptomic matrices, species trees (ASTRAL and concatenated supermatrix) and gene trees used for data exploration.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    corecore