6,793 research outputs found

    Modelling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies

    Get PDF
    We model the intensity of emission lines from the CO molecule, based on hydrodynamic simulations of spirals, mergers, and high-redshift galaxies with very high resolutions (3pc and 10^3 Msun) and detailed models for the phase-space structure of the interstellar gas including shock heating, stellar feedback processes and galactic winds. The simulations are analyzed with a Large Velocity Gradient (LVG) model to compute the local emission in various molecular lines in each resolution element, radiation transfer and opacity effects, and the intensity emerging from galaxies, to generate synthetic spectra for various transitions of the CO molecule. This model reproduces the known properties of CO spectra and CO-to-H2 conversion factors in nearby spirals and starbursting major mergers. The high excitation of CO lines in mergers is dominated by an excess of high-density gas, and the high turbulent velocities and compression that create this dense gas excess result in broad linewidths and low CO intensity-to-H2 mass ratios. When applied to high-redshift gas-rich disks galaxies, the same model predicts that their CO-to-H2 conversion factor is almost as high as in nearby spirals, and much higher than in starbursting mergers. High-redshift disk galaxies contain giant star-forming clumps that host a high-excitation component associated to gas warmed by the spatially-concentrated stellar feedback sources, although CO(1-0) to CO(3-2) emission is overall dominated by low-excitation gas around the densest clumps. These results overall highlight a strong dependence of CO excitation and the CO-to-H2 conversion factor on galaxy type, even at similar star formation rates or densities. The underlying processes are driven by the interstellar medium structure and turbulence and its response to stellar feedback, which depend on global galaxy structure and in turn impact the CO emission properties.Comment: A&A in pres

    RHAPSODY-G simulations II - Baryonic growth and metal enrichment in massive galaxy clusters

    Get PDF
    We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (Mvir6×1014M_{\rm vir}\approx 6\times 10^{14} M/h_{\odot}/h) simulated galaxy clusters from the Rhapsody-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of AGN feedback at the sub-grid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low and high resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of two lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple "regulator" model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.Comment: 22 pages, 11 figures, 2 tables. Accepted for publication on MNRA

    Rhapsody-G simulations: galaxy clusters as baryonic closed boxes and the covariance between hot gas and galaxies

    Get PDF
    Within a sufficiently large cosmic volume, conservation of baryons implies a simple `closed box' view in which the sum of the baryonic components must equal a constant fraction of the total enclosed mass. We present evidence from Rhapsody-G hydrodynamic simulations of massive galaxy clusters that the closed-box expectation may hold to a surprising degree within the interior, non-linear regions of haloes. At a fixed halo mass, we find a significant anti-correlation between hot gas mass fraction and galaxy mass fraction (cold gas + stars), with a rank correlation coefficient of -0.69 within R500cR_{500c}. Because of this anti-correlation, the total baryon mass serves as a low-scatter proxy for total cluster mass. The fractional scatter of total baryon fraction scales approximately as 0.02(Δc/100)0.60.02 (\Delta_c/100)^{0.6}, while the scatter of either gas mass or stellar mass is larger in magnitude and declines more slowly with increasing radius. We discuss potential observational tests using cluster samples selected by optical and hot gas properties; the simulations suggest that joint selection on stellar and hot gas has potential to achieve 5% scatter in total halo mass.Comment: 10 pages, 6 figures, 3 tables; replaced to match published versio

    Environmental regulation of cloud and star formation in galactic bars

    Full text link
    The strong time-dependence of the dynamics of galactic bars yields a complex and rapidly evolving distribution of dense gas and star forming regions. Although bars mainly host regions void of any star formation activity, their extremities can gather the physical conditions for the formation of molecular complexes and mini-starbursts. Using a sub-parsec resolution hydrodynamical simulation of a Milky Way-like galaxy, we probe these conditions to explore how and where bar (hydro-)dynamics favours the formation or destruction of molecular clouds and stars. The interplay between the kpc-scale dynamics (gas flows, shear) and the parsec-scale (turbulence) is key to this problem. We find a strong dichotomy between the leading and trailing sides of the bar, in term of cloud fragmentation and in the age distribution of the young stars. After orbiting along the bar edge, these young structures slow down at the extremities of the bar, where orbital crowding increases the probability of cloud-cloud collision. We find that such events increase the Mach number of the cloud, leading to an enhanced star formation efficiency and finally the formation of massive stellar associations, in a fashion similar to galaxy-galaxy interactions. We highlight the role of bar dynamics in decoupling young stars from the clouds in which they form, and discuss the implications on the injection of feedback into the interstellar medium, in particular in the context of galaxy formation.Comment: MNRAS accepte

    The hyperfine structure in the rotational spectrum of CF+

    Full text link
    Context. CF+ has recently been detected in the Horsehead and Orion Bar photo-dissociation regions. The J=1-0 line in the Horsehead is double-peaked in contrast to other millimeter lines. The origin of this double-peak profile may be kinematic or spectroscopic. Aims. We investigate the effect of hyperfine interactions due to the fluorine nucleus in CF+ on the rotational transitions. Methods. We compute the fluorine spin rotation constant of CF+ using high-level quantum chemical methods and determine the relative positions and intensities of each hyperfine component. This information is used to fit the theoretical hyperfine components to the observed CF+ line profiles, thereby employing the hyperfine fitting method in GILDAS. Results. The fluorine spin rotation constant of CF+ is 229.2 kHz. This way, the double-peaked CF+ line profiles are well fitted by the hyperfine components predicted by the calculations. The unusually large hyperfine splitting of the CF+ line therefore explains the shape of the lines detected in the Horsehead nebula, without invoking intricate kinematics in the UV-illuminated gas.Comment: 2 pages, 1 figure, Accepted for publication in A&

    Gamma ray and Neutrino fluxes from a cosmological dark matter simulation

    Full text link
    In this paper, we estimate the gamma-ray and neutrino fluxes coming from dark matter annihilation in a Milky Way framework provided by a recent N-BODY HORIZON simulation. We first study the characteristics of the simulation and highlight the mass distribution within the galactic halo. The general dark matter density has a typical r3r^{-3} power law for large radii, but the inner behaviour is poorly constrained below the resolution of the simulation (200\sim 200 pc). We identify clumps and subclumps and analyze their distribution, as well as their internal structure. Inside the clumps, the power law is rather universal, r2.5r^{-2.5} in the outer part with again strong uncertainties for smaller radii, especially for light clumps. We show a full-sky map of the astrophysical contribution to the gamma-ray or neutrino fluxes in this N-body framework. Using quite model independent and general assumptions for the high energy physics part, we evaluate the possible absolute fluxes and show some benchmark regions for the experiments GLAST, EGRET, and a km3 size extension of ANTARES like the KM3NeT project. While individual clumps seem to be beyond detection reach, the galactic center region is promising and GLAST could be sensitive to the geometry and the structure of its dark matter distribution. The detection by a km3 version of ANTARES is, however, more challenging due to a higher energy threshold. We also point out that the lack of resolution leaves the inner structure of subhalos poorly constrained. Using the same clump spectrum and mass fraction, a clump luminosity boost of order ten can be achieved with a steeper profile in the inner part of the sub-halos.Comment: 15 pages, 8 figure

    XMM -Newton observations of merging clusters of galaxies: A3921 and A1750

    Full text link
    We show the XMM-Newton guaranted time observations of 2 clusters of galaxies in a different stage of merger.Comment: 4 pages, LaTex, 9 figures. To appear in the Proceedings of the Conference "New Visions of the X-ray Universe in the XMM-Newton and Chandra era" -ESTEC - Noordwijk, The Netherlands, Nov 200
    corecore