15 research outputs found

    Scalable Synthesis of Few-Layered 2D Tungsten Diselenide (2H-WSe2) Nanosheets Directly Grown on Tungsten (W) Foil Using Ambient-Pressure Chemical Vapor Deposition for Reversible Li-Ion Storage

    Get PDF
    We report a facile two-furnace APCVD synthesis of 2H-WSe2. A systematic study of the process parameters is performed to show the formation of the phase-pure material. Extensive characterization of the bulk and exfoliated material confirm that 2H-WSe2 is layered (i.e., 2D). X-ray diffraction (XRD) confirms the phase, while high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM) clarify the morphology of the material. Focused ion beam scanning electron microscopy (FIB-SEM) estimates the depth of the 2H-WSe2 formed on W foil to be around 5-8 μm, and Raman/UV-vis measurements prove the quality of the exfoliated 2H-WSe2. Studies on the redox processes of lithium-ion batteries (LiBs) show an increase in capacity up to 500 cycles. On prolonged cycling, the discharge capacity up to the 50th cycle at 250 mA/g of the material shows a stable value of 550 mAh/g. These observations indicate that exfoliated 2H-WSe2 has promising applications as an LiB electrode material

    Room-Temperature NO2 Sensing of CVD-Modified WS2-WSe2 Heterojunctions

    No full text
    Two-dimensional (2D) semiconducting heterojunction chemical sensors are in high demand because of their enhanced response, stability, and selectivity. However, fine-tuning heterojunctions using vapor deposition growth still needs further research. Our present study focuses on the ambient pressure chemical vapor deposition (CVD) synthesis of hexagonal tungsten sulfide-tungsten selenide (WS2-WSe2) p-p heterojunctions (as a 2D-2D arrangement). We use the liquid-phase exfoliation method to disperse bulk WS2 and WSe2 and decorate large flakes of WS2 with smaller WSe2 nanosheets in CVD. Electron microscopy and related surface investigations reveal their homogeneity on drop-casting. Two drops from the exfoliated heterojunction dispersion were drop-cast on a transducer to study the NO2 response and related sensing properties. The sensor showed long-term stability (>2 months), even at high humidity levels (40-90%). The gas-sensing properties of this layered p-p heterojunction-based nanocomposite strongly suggest an affinity toward NO2 gas, leading to improved response, high stability, independent of humidity effects, and high selectivity

    Phosphate Ester Hydrolysis Of Biologically Relevant Molecules By Cerium Oxide Nanoparticles

    No full text
    In an effort to characterize the interaction of cerium oxide nanoparticles (CNPs) in biological systems, we explored the reactivity of CNPs with the phosphate ester bonds of p-nitrophenylphosphate (pNPP), ATP, o-phospho-l-tyrosine, and DNA. The activity of the bond cleavage for pNPP at pH 7 is calculated to be 0.860 ± 0.010 nmol p-nitrophenol/min/μg CNPs. Interestingly, when CNPs bind to plasmid DNA, no cleavage products are detected. While cerium(IV) complexes generally exhibit the ability to break phosphorus-oxygen bonds, the reactions we report appear to be dependent on the availability of cerium(III) sites, not cerium(IV) sites. We investigated the dephosphorylation mechanism from the first principles and find the reaction proceeds through inversion of the phosphate group similar to an SN2 mechanism. The ability of CNPs to interact with phosphate ester bonds of biologically relevant molecules has important implications for their use as potential therapeutics. From the Clinical Editor: The ability of cerium oxide nanoparticles to interact with phosphate ester bonds of biologically relevant molecules has important implications for their use as potential therapeutics. This team of investigators explored the reactivity of these nanoparticles with the phosphate ester bonds of p-nitrophenylphosphate, ATP, o-phospho-L-tyrosine, and DNA. © 2010 Elsevier Inc

    Robust Room-Temperature NO2Sensors from Exfoliated 2D Few-Layered CVD-Grown Bulk Tungsten Di-selenide (2H-WSe2)

    No full text
    We report a facile and robust room-temperature NO2 sensor fabricated using bi- and multi-layered 2H variant of tungsten di-selenide (2H-WSe2) nanosheets, exhibiting high sensing characteristics. A simple liquid-assisted exfoliation of 2H-WSe2, prepared using ambient pressure chemical vapor deposition, allows smooth integration of these nanosheets on transducers. Three sensor batches are fabricated by modulating the total number of layers (L) obtained from the total number of droplets from a homogeneous 2H-WSe2 dispersion, such as ∼2L, ∼5-6L, and ∼13-17L, respectively. The gas-sensing attributes of 2H-WSe2 nanosheets are investigated thoroughly. Room temperature (RT) experiments show that these devices are specifically tailored for NO2 detection. 2L WSe2 nanosheets deliver the best rapid response compared to ∼5-6L or ∼13-17L. The response of 2L WSe2 at RT is 250, 328, and 361% to 2, 4, and 6 ppm NO2, respectively. The sensor showed nearly the same response toward low NO2 concentration even after 9 months of testing, confirming its remarkable long-term stability. A selectivity study, performed at three working temperatures (RT, 100, and 150 °C), shows high selectivity at 150 and 100 °C. Full selectivity toward NO2 at RT confirms that 2H-WSe2 nanosheet-based sensors are ideal candidates for NO2 gas detection

    Designing of carbon nanotubes/cotton fabric composite for e-textiles: effect of carbon nanotubes-lenght on electroconductive properties

    No full text
    Nonfunctionalized carbon nanotubes featuring length over than 500 μm, were mixed with an amino-functionalized sol-gel precursor and a highly volatile solvent in order to obtain a well-dispersed solution. Finally, a thickener was added to the nanotubes dispersion thus obtaining a viscous paste, which was deposited on cotton fabrics through knife-over-roll technique thus achieving a surface coating with high electrical conductivity. The as-prepared conductive cotton fabrics were characterized by different chemical-physical techniques and showed a sheet resistance of about 9.5 • 102 Ω/sq. Developed conductive fabrics can find applications as conductive material or wearable sensors

    Water-assisted Growth of Uniform 100 mm Diameter SWCNT Arrays

    No full text
    We report a simple method for growing high-quality single-walled carbon nanotube (SWCNT) arrays on 100 mm wafers via the addition of water vapor to highly purified gases during the CNT growth step. We show that adding a small amount of water during growth helps to create a uniform catalyst distribution and yields high-quality (Raman G/D of 26 +/- 3), high-density (up to 6 x 10 (11) cm(-2)) and uniform SWCNT arrays on 100 mm large wafers. We rationalize our finding by suggesting that the addition of water decreases catalyst mobility, preventing its coarsening at higher temperatures. We also report a new mechanism of catalyst inactivation in wafer-scale growth using ultrapurified gas sources by the formation of large, 5 +/- 3 mu m iron particles. We found such formations to be common for substrates with large temperature gradients, such as for wafers processed in a typical cold-wall chemical vapor deposition reactor.11Nsciescopu
    corecore