8 research outputs found

    Historical and simulated ecosystem carbon dynamics in Ghana: land use, management, and climate

    Get PDF
    International audienceWe used the General Ensemble biogeochemical Modeling System (GEMS) to simulate responses of natural and managed ecosystems to changes in land use, management, and climate for a forest/savanna transitional zone in central Ghana. Model results show that deforestation for crop production during the last century resulted in a substantial reduction in ecosystem carbon (C) stock from 135.4 Mg C ha?1 in 1900 to 77.0 Mg C ha?1 in 2000, and in soil organic C stock within the top 20 cm of soil from 26.6 Mg C ha?1 to 21.2 Mg C ha?1. If no land use change takes place from 2000 through 2100, low and high climate change scenarios (increase in temperature and decrease in precipitation over time) will result in losses of soil organic C stock by 19% and 25%, respectively. A low nitrogen (N) fertilization rate is the principal constraint on current crop production. An increase in N fertilization under the low climate change scenario would increase crop yield by 14% with 30 kg N ha?1 and by 38% with 60 kg N ha?1, leading to an increase in the average soil C stock by 12% and 29%, respectively, in all cropland by 2100. The results suggest that the climate changes in the future from current climate conditions will not necessarily become a determinant control on ecosystem C fluxes and crop production, while a reasonable N fertilization rate is critical to achieve food security and agricultural sustainability in the study area through the 21st century, and current cropping systems could be optimized to make full use of the rainfall resource

    Intensifying Maize Production Under Climate Change Scenarios in Central West Burkina Faso

    Get PDF
    Combination of poor soil fertility and climate change and variability is the biggest obstacle to agricultural productivity in Sub-Saharan Africa. While each of these factors requires different promising adaptive and climate-resilient options, it is important to be able to disaggregate their effects. This can be accomplished with ordinary agronomic trials for soil fertility and climate year-to-year variability, but not for long-term climate change effects. In turn, by using climate historical records and scenario outputs from climate models to run dynamic models for crop growth and yield, it is possible to test the performance of crop management options in the past but also anticipate their performance under future climate change or variability. Nowadays, the overwhelming importance given to the use of crop models is motivated by the need of predicting crop production under future climate change, and outputs from running crop models may serve for devising climate risk adaptation strategies. In this study we predicted yield of one maize variety named Massongo for the time periods 1980–2010 (historical) and 2021–2050 (2030s, near future) across agronomic practices including the fertilizer input rates recommended by the national extension services (28 kg N, 20 kg P, and 13 kg K ha−1). The performance of the crop model DSSAT 4.6 for maize was first evaluated using on-farm experimental data that encompassed two seasons in the Sudano-Sahelian zone in six contrasting sites of Central West Burkina Faso. The efficiency of the crop model was evidenced by reliable simulations of total aboveground biomass and yields after calibration and validation. The root-mean-square error (RMSE) of the entire dataset for grain yield was 643 kg ha−1 and 2010 kg ha−1 for total aboveground biomass. Three regional climate change projections for Central West Burkina Faso indicate a decrease in rainfall during the growing period of maize. All the three scenarios project that the decrease in rainfall is to the tune of 3–9% in the 2030s under RCP4.5 in contrast to climate scenarios produced by the regional climate model GCM ICHEC-EC-Earth which predicted an increase of rainfall of 25% under RCP8.5. Simulations using the CERES-DSSAT model reveal that maize yields without fertilizer show the same trend as with fertilizer in response to climate change projections across RCPs. Under RCP4.5 with output from the climate model ICHEC-EC-Earth, yield can slightly increase compared to the historical baseline on average by less than 5%. In contrast, under RCP8.5, yield is increased by 13–22% with the two other climate models in fertilized and non-fertilized plots, respectively. Nevertheless, the average maize yield will stay below 2000 kg ha−1 under non-fertilized plots in RCP4.5 and with recommended mineral fertilizer rates regardless of the RCP scenarios produced by ICHEC-EC-Earth. Giving the fact that soil fertility improvement alone cannot compensate for the adverse impact of future climate on agricultural production particularly in case of high rainfall predicted by ICHEC-EC-Earth, it is recommended to combine various agricultural techniques and practices to improve uptake of nitrogen and to reduce nitrogen leaching such as the splitting of fertilizer applications, low-release nitrogen fertilizers, agroforestry, and any other soil and water conservation practices

    Dealing with reducing trends in forest ecosystem services through a vulnerability assessment and planned adaptation actions

    Get PDF
    Vulnerability of forest ecosystems in West Africa is likely to be aggravated with current and projected climate and human stresses with implications for adaptation and REDD regimes. This is because vulnerability of the forest ecosystems affects economic sectors and millions of people that depend on their services. This study investigated vulnerability of forest ecosystems through land use land cover (LULC) changes and the availability of economically useful forest ecosystem provisioning services in Ghana and Burkina Faso in the face of different stresses using landsat imageries and Participatory Rural Appraisal. Our analysis indicates that current and projected land cover changes and local perception on availability of forest resources in the different ecological zones are facing a decreasing trend due to various climatic and anthropogenic drivers. Ghana shows a transition in the order of high forest, forest-savanna transition, savanna to widely open cultivated savanna, while study areas in Burkina Faso is experiencing a gradual reduction of dense natural forests reserves towards a more sparse vegetation. Local knowledge in addition to observed changes in LULC can be a useful resource in preparing communities and ecosystems for adaptation as well as contribute to the input based adoption of appropriate policies in REDD schemes
    corecore