1,144 research outputs found

    Estimation of catchment response time using a new automated event-based approach

    Get PDF

    Black hole-neutron star mergers for 10 solar mass black holes

    Get PDF
    General relativistic simulations of black hole-neutron star mergers have currently been limited to low-mass black holes (less than 7 solar mass), even though population synthesis models indicate that a majority of mergers might involve more massive black holes (10 solar mass or more). We present the first general relativistic simulations of black hole-neutron star mergers with 10 solar mass black holes. For massive black holes, the tidal forces acting on the neutron star are usually too weak to disrupt the star before it reaches the innermost stable circular orbit of the black hole. Varying the spin of the black hole in the range a/M = 0.5-0.9, we find that mergers result in the disruption of the star and the formation of a massive accretion disk only for large spins a/M>0.7-0.9. From these results, we obtain updated constraints on the ability of BHNS mergers to be the progenitors of short gamma-ray bursts as a function of the mass and spin of the black hole. We also discuss the dependence of the gravitational wave signal on the black hole parameters, and provide waveforms and spectra from simulations beginning 7-8 orbits before merger.Comment: 11 pages, 11 figures - Updated to match published versio

    A Structured Framework and Resources to Use to Get Your Medical Education Work Published.

    Get PDF
    IntroductionMedical educators often have great ideas for medical education scholarship but have difficulty converting their educational abstract or project into a published manuscript.MethodsDuring this workshop, participants addressed common challenges in developing an educational manuscript. In small-group case scenarios, participants discovered the importance of the "So what?" in making the case for their project. Incorporating conceptual frameworks, participants chose appropriate outcome metrics, discussed how to frame the discussion section, and ensured appropriate journal fit. After each small-group exercise, large-group discussions allowed the small groups to report back so that facilitators could highlight and reinforce key learning points. At the conclusion of the workshop, participants left with a checklist for creating an educational manuscript and an additional resources document to assist them in avoiding common pitfalls when turning their educational abstract/project into a publishable manuscript.ResultsThis workshop was presented in 2016 and 2017. Presenter evaluations were completed by 33 participants; 11 completed conference evaluations. The mean overall rating on presenter evaluations was 4.55 out of 5, while the conference evaluations mean was 3.73 out of 4. Comments provided on both evaluation tools highlighted the perceived effectiveness of the delivery and content. More than 50% of respondents stated that they planned to incorporate the use of conceptual frameworks in future work.DiscussionThis workshop helped participants address common challenges by providing opportunities for hands-on practice as well as tips and resources for use when submitting a medical education manuscript for publication

    Comparing Gravitational Waveform Extrapolation to Cauchy-Characteristic Extraction in Binary Black Hole Simulations

    Get PDF
    We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar Ψ4\Psi_4 at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects---unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-Ψ4\Psi_4 waveforms. We examine data from several different binary configurations and measure the dominant sources of error in the extrapolated-Ψ4\Psi_4 and CCE waveforms. In some cases, we find that NP waveforms extrapolated to infinity agree with the corresponding CCE waveforms to within the estimated error bars. However, we find that in other cases extrapolated and CCE waveforms disagree, most notably for m=0m=0 "memory" modes.Comment: 26 pages, 20 figure

    Initial data for black hole-neutron star binaries, with rotating stars

    Get PDF
    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole--neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as SBH/MBH2=0.99S_{\rm BH}/M_{\rm BH}^2=0.99.Comment: 25 pages, 12 figure

    Fast and accurate prediction of numerical relativity waveforms from binary black hole coalescences using surrogate models

    Get PDF
    Simulating a binary black hole (BBH) coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from non-spinning BBH coalescences with mass ratios in [1,10][1, 10] and durations corresponding to about 1515 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms {\em not} used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic 2Ym{}_{-2}Y_{\ell m} waveform modes resolved by the NR code up to =8.\ell=8. We compare our surrogate model to Effective One Body waveforms from 5050-300M300 M_\odot for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).Comment: Updated to published version, which includes a section comparing the surrogate and effective-one-body models. The surrogate is publicly available for download at http://www.black-holes.org/surrogates/ . 6 pages, 6 figure

    Massive disk formation in the tidal disruption of a neutron star by a nearly extremal black hole

    Get PDF
    Black hole-neutron star (BHNS) binaries are important sources of gravitational waves for second-generation interferometers, and BHNS mergers are also a proposed engine for short, hard gamma-ray bursts. The behavior of both the spacetime (and thus the emitted gravitational waves) and the neutron star matter in a BHNS merger depend strongly and nonlinearly on the black hole's spin. While there is a significant possibility that astrophysical black holes could have spins that are nearly extremal (i.e. near the theoretical maximum), to date fully relativistic simulations of BHNS binaries have included black-hole spins only up to S/M2S/M^2=0.9, which corresponds to the black hole having approximately half as much rotational energy as possible, given the black hole's mass. In this paper, we present a new simulation of a BHNS binary with a mass ratio q=3q=3 and black-hole spin S/M2S/M^2=0.97, the highest simulated to date. We find that the black hole's large spin leads to the most massive accretion disk and the largest tidal tail outflow of any fully relativistic BHNS simulations to date, even exceeding the results implied by extrapolating results from simulations with lower black-hole spin. The disk appears to be remarkably stable. We also find that the high black-hole spin persists until shortly before the time of merger; afterwards, both merger and accretion spin down the black hole.Comment: 20 pages, 10 figures, submitted to Classical and Quantum Gravit

    Improved methods for simulating nearly extremal binary black holes

    Get PDF
    Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass mm and spin SS exceeding the Bowen-York limit of S/m2=0.93S/m^2=0.93. We present improved methods that enable us to simulate merging, nearly extremal black holes more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S/m2=0.99S/m^2=0.99. We also use these methods to simulate a non-precessing binary black hole coalescence, where both black holes have S/m2=0.994S/m^2=0.994, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black-hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called "orbital hangup" effect).Comment: 18 pages, 18 figure

    Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism

    Get PDF
    We describe a general procedure to generate spinning, precessing waveforms that include inspiral, merger and ringdown stages in the effective-one-body (EOB) approach. The procedure uses a precessing frame in which precession-induced amplitude and phase modulations are minimized, and an inertial frame, aligned with the spin of the final black hole, in which we carry out the matching of the inspiral-plunge to merger-ringdown waveforms. As a first application, we build spinning, precessing EOB waveforms for the gravitational modes l=2 such that in the nonprecessing limit those waveforms agree with the EOB waveforms recently calibrated to numerical-relativity waveforms. Without recalibrating the EOB model, we then compare EOB and post-Newtonian precessing waveforms to two numerical-relativity waveforms produced by the Caltech-Cornell-CITA collaboration. The numerical waveforms are strongly precessing and have 35 and 65 gravitational-wave cycles. We find a remarkable agreement between EOB and numerical-relativity precessing waveforms and spins' evolutions. The phase difference is ~ 0.2 rad at merger, while the mismatches, computed using the advanced-LIGO noise spectral density, are below 2% when maximizing only on the time and phase at coalescence and on the polarization angle.Comment: 17 pages, 10 figure
    corecore