2,820 research outputs found

    Reflections on a Measurement of the Gravitational Constant Using a Beam Balance and 13 Tons of Mercury

    Full text link
    In 2006, a final result of a measurement of the gravitational constant GG performed by researchers at the University of Z\"urich was published. A value of G=6.674\,252(122)\times 10^{-11}\,\mbox{m}^3\,\mbox{kg}^{-1}\,\mbox{s}^{-2} was obtained after an experimental effort that lasted over one decade. Here, we briefly summarize the measurement and discuss the strengths and weaknesses of this approach.Comment: 13 pages, 5 figures accepted for publication in Phil. Trans. R. Soc.

    An Ontology for Submarine Feature Representation on Charts

    Get PDF
    A landform is a subjective individuation of a part of a terrain. Landform recognition is a difficult task because its definition usually relies on a qualitative and fuzzy description. Achieving automatic recognition of landforms requires a formal definition of the landforms properties and their modelling. In the maritime domain, the International Hydrographic Organisation published a standard terminology of undersea feature names which formalises a set of definition mainly for naming and communication purpose. This terminology is here used as a starting point for the definition of an ontology of undersea features and their automatic classification from a terrain model. First, an ontology of undersea features is built. The ontology is composed of an application domain ontology describing the main properties and relationships between features and a representation ontology deals with representation on a chart where features are portrayed by soundings and isobaths. A database model was generated from the ontology. Geometrical properties describing the feature shape are computed from soundings and isobaths and are used for feature classification. An example of automatic classification on a nautical chart is presented and results and on-going research are discussed

    The linear growth rate of structure in Parametrized Post Friedmannian Universes

    Full text link
    A possible solution to the dark energy problem is that Einstein's theory of general relativity is modified. A suite of models have been proposed that, in general, are unable to predict the correct amount of large scale structure in the distribution of galaxies or anisotropies in the Cosmic Microwave Background. It has been argued, however, that it should be possible to constrain a general class of theories of modified gravity by focusing on properties such as the growing mode, gravitational slip and the effective, time varying Newton's constant. We show that assuming certain physical requirements such as stability, metricity and gauge invariance, it is possible to come up with consistency conditions between these various parameters. In this paper we focus on theories which have, at most, 2nd derivatives in the metric variables and find restrictions that shed light on current and future experimental constraints without having to resort to a (as yet unknown) complete theory of modified gravity. We claim that future measurements of the growth of structure on small scales (i.e. from 1-200 h^{-1} Mpc) may lead to tight constraints on both dark energy and modified theories of gravity.Comment: 15 Pages, 11 Figure

    Pulsation of Spherically Symmetric Systems in General Relativity

    Full text link
    The pulsation equations for spherically symmetric black hole and soliton solutions are brought into a standard form. The formulae apply to a large class of field theoretical matter models and can easily be worked out for specific examples. The close relation to the energy principle in terms of the second variation of the Schwarzschild mass is also established. The use of the general expressions is illustrated for the Einstein-Yang-Mills and the Einstein-Skyrme system.Comment: 21 pages, latex, no figure

    Soliton and black hole solutions of su(N) Einstein-Yang-Mills theory in anti-de Sitter space

    Get PDF
    We present new soliton and hairy black hole solutions of su(N) Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. These solutions are described by N+1 independent parameters, and have N-1 gauge field degrees of freedom. We examine the space of solutions in detail for su(3) and su(4) solitons and black holes. If the magnitude of the cosmological constant is sufficiently large, we find solutions where all the gauge field functions have no zeros. These solutions are of particular interest because we anticipate that at least some of them will be linearly stable.Comment: 15 pages, 20 figures, minor changes, accepted for publication in Physical Review

    Gravitomagnetism, clocks and geometry

    Get PDF
    New techniques to evaluate the clock effect using light are described. These are based on the flatness of the cylindrical surface containing the world lines of the rays constrained to move on circular trajectories about a spinning mass. The effect of the angular momentum of the source is manifested in the fact that inertial observers must be replaced by local non rotating observers. Starting from this an exact formula for circular trajectories is found. Numerical estimates for the Earth environment show that light would be a better probe than actual clocks to evidence the angular momentum influence. The advantages of light in connection with some principle experiments are shortly reviewed.Comment: TCI Latex, 12 pages, 2 figures. To appear in European Journal of Physic

    Effect of Peculiar Motion in Weak Lensing

    Full text link
    We study the effect of peculiar motion in weak gravitational lensing. We derive a fully relativistic formula for the cosmic shear and the convergence in a perturbed Friedmann Universe. We find a new contribution related to galaxies peculiar velocity. This contribution does not affect cosmic shear in a measurable way, since it is of second order in the velocity. However, its effect on the convergence (and consequently on the magnification, which is a measurable quantity) is important, especially for redshifts z < 1. As a consequence, peculiar motion modifies also the relation between the shear and the convergence.Comment: 11 pages, 7 figures; v2: discussion on the reduced shear added (5.C), additional references, version accepted in PRD; v3: mistakes corrected in eqs. (26), (31), (33) and (44); results unchange

    Static Axially Symmetric Solutions of Einstein-Yang-Mills-Dilaton Theory

    Get PDF
    We construct static axially symmetric solutions of SU(2) Einstein-Yang-Mills-dilaton theory. Like their spherically symmetric counterparts, these solutions are nonsingular and asymptotically flat. The solutions are characterized by the winding number n and the node number k of the gauge field functions. For fixed n with increasing k the solutions tend to ``extremal'' Einstein-Maxwell-dilaton black holes with n units of magnetic charge.Comment: 11 pages, including 2 postscript figure

    A Measurement of Newton's Gravitational Constant

    Get PDF
    A precision measurement of the gravitational constant GG has been made using a beam balance. Special attention has been given to determining the calibration, the effect of a possible nonlinearity of the balance and the zero-point variation of the balance. The equipment, the measurements and the analysis are described in detail. The value obtained for G is 6.674252(109)(54) 10^{-11} m3 kg-1 s-2. The relative statistical and systematic uncertainties of this result are 16.3 10^{-6} and 8.1 10^{-6}, respectively.Comment: 26 pages, 20 figures, Accepted for publication by Phys. Rev.

    Angular momentum effects in Michelson-Morley type experiments

    Get PDF
    The effect of the angular momentum density of a gravitational source on the times of flight of light rays in an interferometer is analyzed. The calculation is made imagining that the interferometer is at the equator of the gravity source and, as long as possible, the metric, provided it is stationary and axisymmetric, is not approximated. Finally, in order to evaluate the size of the effect in the case of the Earth a weak field approximation is introduced. For laboratory scales and non-geodesic paths the correction turns out to be comparable with the sensitivity expected in gravitational waves interferometric detectors, whereas it drops under the threshold of detectability when using free (geodesic) light rays.Comment: 12 pages, LaTeX; more about the detection technique, references added; accepted for publication in GR
    • …
    corecore