
ar
X

iv
:0

70
8.

23
57

v2
  [

gr
-q

c]
  1

 N
ov

 2
00

7

Soliton and black hole solutions of su(N) Einstein-Yang-Mills theory in anti-de Sitter
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We present new soliton and hairy black hole solutions of su(N) Einstein-Yang-Mills theory in
asymptotically anti-de Sitter space. These solutions are described by N +1 independent parameters,
and have N −1 gauge field degrees of freedom. We examine the space of solutions in detail for su(3)
and su(4) solitons and black holes. If the magnitude of the cosmological constant is sufficiently
large, we find solutions where all the gauge field functions have no zeros. These solutions are of
particular interest because we anticipate that at least some of them will be linearly stable.

PACS numbers: 04.20.Jb, 04.40.Nr, 04.70.Bw

I. INTRODUCTION

Soliton and hairy black hole solutions of Einstein-
Yang-Mills (EYM) theory and its variants have been the
subject of extensive research since the discovery of non-
trivial, spherically symmetric solitons [1] and ‘colored’
black holes [2] in su(2) EYM in asymptotically flat space-
time. These black holes are ‘hairy’ in the sense that they
have no magnetic charge, and are therefore indistinguish-
able at infinity from a standard Schwarzschild black hole.
There are discrete families of solutions, indexed by the
event horizon radius rh (with rh = 0 for solitons) and n,
the number of zeros of the single gauge field function ω,
each pair (rh, n) identifying a solution of the field equa-
tions. A key feature of the solutions is that n > 0, so that
the gauge field function must have at least one zero (or
‘node’). These solutions, while they violate the ‘letter’
of the no-hair conjecture, may be thought of as not con-
tradicting its ‘spirit’, since they are found to be unstable
to classical, linear, spherically symmetric perturbations
[3]. There is also a large literature concerning analytic
studies of the asymptotically flat su(2) EYM field equa-
tions [4, 5], proving the existence of the above numerical
solutions and detailed properties of the phase space of so-
lutions. Since these initial discoveries a plethora of new
soliton and black hole solutions have been found (see [6]
for a review). The present work combines two natural
extensions of these initial studies: the generalization to
su(N) EYM, and the inclusion of a negative cosmological
constant. We now briefly review each of these general-
izations in turn.

Firstly, in asymptotically flat space, both charged and
neutral numerical solutions of the su(N) EYM field equa-
tions have been found [7]. We consider in this paper only
purely magnetic solutions, which, in the asymptotically
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flat case, are described by N − 1 gauge field functions
ωj. As in asymptotically flat su(2) EYM, solutions exist
at discrete points in the parameter space, and can be in-
dexed by the radius of the event horizon (if there is one)
and the number of nodes of the ωj (all ωj having at least
one zero). Once again, there is a general result [8] that
all these solutions must be unstable. The su(N) EYM
field equations are considerably more complicated than
those for su(2) and correspondingly less analytic work
has been done. Local existence of solutions of the field
equations near the origin (for solitons), black hole event
horizon (if there is one) and at infinity has been estab-
lished [9, 10]. There is a heuristic proof (following [4]) of
the existence of black hole solutions for general N [11],
but more rigorous work exits only for the case of su(3)
[12].

The second generalization of asymptotically flat su(2)
EYM that we consider in this paper is the inclusion of a
non-zero cosmological constant Λ. When the cosmolog-
ical constant is positive, soliton [13] and black hole [14]
su(2) solutions have been found. These solutions pos-
sess a cosmological horizon and approach de Sitter space
at infinity (for a complete classification of the possible
space-time structures, see [15]). The phase space of solu-
tions is again discrete, and the single gauge field function
ω must have at least one zero. Unsurprisingly, these solu-
tions again turn out to be unstable [14, 16]. The inclusion
of a negative cosmological constant (so that the space-
time is asymptotically anti-de Sitter (adS)) may be moti-
vated by recent progress in string theory, particularly the
adS/CFT correspondence [17]. It is found [18, 19] that
the solutions of su(2) EYM in adS possess quite differ-
ent properties compared with their asymptotically flat or
asymptotically de Sitter cousins. In particular, solutions
for which the gauge field function ω has no zeros exist for
sufficiently large |Λ|. Solutions exist in continuous open
subsets of the parameter space, rather than at discrete
points. In addition, for sufficiently large |Λ|, at least
some of these solutions are stable under linear, spheri-
cally symmetric perturbations [18, 19] (this was subse-
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quently extended to cover non-spherically symmetric lin-
ear perturbations in [20]). Therefore, while black holes
cannot be given stable YM hair in either asymptotically
flat or asymptotically de Sitter space, in asymptotically
anti-de Sitter space, stable gauge field hair is possible.

We are thus led to the following natural question: are
there stable solutions of the su(N) EYM solutions with
a negative cosmological constant? In this paper we will
present the first soliton and hairy black hole solutions of
su(N) EYM in adS, for N > 2. We consider only purely
magnetic gauge fields, so that the YM field is described
by N − 1 functions ωj . We make a detailed study of
the phase space of solutions and their general properties
in the particular cases N = 3, 4. Of particular interest
is the existence, for sufficiently large |Λ|, of solutions in
which all the ωj have no zeros. We anticipate that at
least some of these solutions will be stable under linear,
spherically symmetric perturbations, and will examine
their stability in detail elsewhere.

The outline of this paper is as follows. In section
II we discuss the field equations, our ansatze for the
fields and the boundary conditions that must be sat-
isfied, considering the cases of black holes and solitons
separately. Our new solutions are discussed in detail in
section III, focussing particularly on the phase space of
solutions. Finally, our conclusions can be found in sec-
tion IV. Throughout this paper, the metric has signature
(−, +, +, +) and we use units in which 4πG = c = 1.

II. ANSATZ, FIELD EQUATIONS AND

BOUNDARY CONDITIONS

A. Ansatz and field equations

We consider static, spherically symmetric, four-
dimensional solitons and black holes with metric

ds2 = −µS2 dt2 + µ−1 dr2 + r2 dθ2 + r2 sin2 θ dφ2, (2.1)

where the metric functions µ and S depend on the radial
co-ordinate r only. In the presence of a negative cosmo-
logical constant Λ < 0, we write the metric function µ
as

µ(r) = 1 − 2m(r)

r
− Λr2

3
. (2.2)

The most general, spherically symmetric, ansatz for the
su(N) gauge potential is [21]:

A = A dt + B dr +
1

2

(

C − CH
)

dθ

− i

2

[(

C + CH
)

sin θ + D cos θ
]

dφ, (2.3)

where A, B, C and D are all (N × N) matrices and CH

is the Hermitian conjugate of C. The matrices A and
B are purely imaginary, diagonal, traceless and depend

only on the radial co-ordinate r. The matrix C is upper-
triangular, with non-zero entries only immediately above
the diagonal:

Cj,j+1 = ωj(r)e
iγj (r), (2.4)

for j = 1, . . . , N −1. In addition, D is a constant matrix:

D = Diag (N − 1, N − 3, . . . ,−N + 3,−N + 1) . (2.5)

Here we consider only purely magnetic solutions, so we
set A ≡ 0. We may also take B ≡ 0 by a choice of
gauge [21]. From now on we will assume that all the
ωj(r) are non-zero (see, for example, [7] for the possibil-
ities in asymptotically flat space if this assumption does
not hold). In this case one of the Yang-Mills equations
becomes [21]

γj = 0 ∀j = 1, . . . , N − 1. (2.6)

Our ansatz for the Yang-Mills potential therefore reduces
to

A =
1

2

(

C − CH
)

dθ − i

2

[(

C + CH
)

sin θ + D cos θ
]

dφ,

(2.7)
where the only non-zero entries of the matrix C are

Cj,j+1 = ωj(r). (2.8)

The gauge field is therefore described by the N − 1 func-
tions ωj(r). We comment that our ansatz (2.7) is by
no means the only possible choice in su(N) EYM. Tech-
niques for finding all spherically symmetric su(N) gauge
potentials can be found in [22], where all irreducible mod-
els are explicitly listed for N ≤ 6.

With the ansatz (2.7), there are N−1 non-trivial Yang-
Mills equations for the N − 1 functions ωj:

r2µω′′

j +

(

2m − 2r3pθ −
2Λr3

3

)

ω′

j + Wjωj = 0 (2.9)

for j = 1, . . . , N − 1, where a prime ′ denotes d/dr,

pθ =
1

4r4

N
∑

j=1

[

(

ω2
j − ω2

j−1 − N − 1 + 2j
)2

]

,(2.10)

Wj = 1 − ω2
j +

1

2

(

ω2
j−1 + ω2

j+1

)

, (2.11)

and ω0 = ωN = 0. The Einstein equations take the form

m′ = µG + r2pθ,
S′

S
=

2G

r
, (2.12)

where

G =
N−1
∑

j=1

ω′2
j . (2.13)

Altogether, then, we have N + 1 ordinary differential
equations for the N + 1 unknown functions m(r), S(r)
and ωj(r).



3

The field equations (2.9,2.12) are invariant under the
transformation

ωj(r) → −ωj(r) (2.14)

for each j independently, and also under the substitution:

j → N − j. (2.15)

B. Boundary conditions

The field equations (2.9,2.12) are singular at the origin
r = 0 (for regular, soliton solutions), the black hole event
horizon r = rh (if there is one) and at infinity r → ∞.
We therefore now discuss the boundary conditions that
must be satisfied by the field variables at these singular
points. Local existence of solutions of the field equations
in neighborhoods of these singular points will be rigor-
ously proved elsewhere [23], generalizing the local exis-
tence proofs in the asymptotically flat case [9, 10]. The
boundary conditions satisfied by black hole solutions are
more easily stated, so we consider those first.

1. Black holes

We assume there is a regular, non-extremal, black hole
event horizon at r = rh, where µ(r) has a single zero.
This fixes the value of m(rh) to be:

2m(rh) = rh − Λr3
h

3
. (2.16)

The field variables ωj(r), m(r) and S(r) will have regular
Taylor series expansions about r = rh:

m(r) = m(rh) + m′(rh) (r − rh) + O (r − rh)
2
;

ωj(r) = ωj(rh) + O (r − rh) ;

S(r) = S(rh) + O (r − rh) . (2.17)

Setting µ(rh) = 0 in the Yang-Mills equations (2.9) fixes
the derivatives of the gauge field functions at the horizon:

ω′

j(rh) = − Wj(rh)ωj(rh)

2m(rh) − 2r3
hpθ(rh) − 2Λr3

h

3

. (2.18)

Therefore the expansions (2.17) are determined by the
N + 1 quantities ωj(rh), rh, S(rh) for fixed cosmological
constant Λ. For the event horizon to be non-extremal, it
must be the case that

2m′(rh) = 2r2
hpθ(rh) < 1 − Λr2

h, (2.19)

which weakly constrains the possible values of the gauge
field functions ωj(rh) at the event horizon. Since the field
equations (2.9,2.12) are invariant under the transforma-
tion (2.14), we may consider ωj(rh) > 0 without loss of
generality.

At infinity, the boundary conditions are considerably
less stringent than in the asymptotically flat case. In
order for the metric (2.1) to be asymptotically adS, we
simply require that the field variables ωj(r), m(r) and
S(r) converge to constant values as r → ∞, and have
regular Taylor series expansions in r−1 near infinity:

m(r) = M + O
(

r−1
)

; S(r) = 1 + O
(

r−1
)

;

ωj(r) = ωj,∞ + O
(

r−1
)

. (2.20)

Since Λ < 0, there is no cosmological horizon.

2. Solitons

Soliton solutions have the same boundary conditions
(2.20) as r → ∞ as black hole solutions. The boundary
conditions at a regular origin, however, are considerably
more complicated than at a black hole event horizon or
at infinity. For the asymptotically flat case, they have
been derived in [9]. As may be expected, the modifica-
tions required by the presence of a non-zero cosmological
constant are not great. However, given the complexity of
these boundary conditions, we now describe their deriva-
tion in some detail.

We begin by assuming a regular Taylor series expan-
sion for all field variables near r = 0:

m(r) = m0 + m1r + m2r
2 + O(r3);

S(r) = S0 + S1r + S2r
2 + O(r3);

ωj(r) = ωj,0 + ωj,1r + ωj,2r
2 + O(r3); (2.21)

where the mi, Si and ωj,i are constants. The expansions
(2.21) are substituted into the field equations (2.9,2.12)
to determine the values of the constants. The constant
S0 is non-zero in order for the metric to be regular at the
origin, but otherwise arbitrary since the field equations
involve only derivatives of S.

Regularity of the metric and curvature at the origin
immediately gives:

m0 = m1 = m2 = 0, S1 = 0, ωj,1 = 0 (2.22)

and

ωj,0 = ±
√

j(N − j). (2.23)

Without loss of generality (due to (2.14)), we take the
positive square root in (2.23).

Examination of the leading order terms in the Yang-
Mills equations (2.9) gives the following constraint on

ω2 = (ω1,2, . . . , ωN−1,2)
T
:

MN−1ω2 = 2ω2. (2.24)
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Here, MN−1 is the (N − 1) × (N − 1) matrix

MN−1 =



















2(N − 1) −
√

(N − 1)2(N − 2) 0 · · · 0

−
√

(N − 1)2(N − 2) 2.2(N − 2) −
√

2(N − 2)3(N − 3) · · · 0

0 −
√

2(N − 2)3(N − 3) 2.3(N − 3) · · · 0
...

...
...

. . .
...

0 0 0 · · · −
√

(N − 1)2(N − 2)
0 0 0 · · · 2(N − 1)



















(2.25)
Therefore ω2 is an eigenvector of the matrix MN−1 with eigenvalue 2 if one exists, otherwise ω2 = 0.

To find the eigenvalues and eigenvectors of MN−1, we first note that it can be written in the form

MN−1 = DN−1M̃N−1D−1
N−1, (2.26)

where

DN−1 = Diag
(√

N − 1,
√

2(N − 2),
√

3(N − 3), . . . ,
√

N − 1
)

M̃N−1 =

















2(N − 1) −2(N − 2) 0 · · · 0
−(N − 1) 2.2(N − 2) −3(N − 3) · · · 0

0 −2(N − 2) 2.3(N − 3) · · · 0
...

...
...

. . .
...

0 0 0 · · · −(N − 1)
0 0 0 · · · 2(N − 1)

















. (2.27)

Then the matrices MN−1 and M̃N−1 have the same
eigenvalues, and the eigenvectors of MN−1 can be de-

duced from those of M̃N−1. This result is useful because

the matrix M̃N−1 has been studied in detail in [9]. There

it is proved that the eigenvalues of M̃N−1 (and therefore
those of MN−1) are:

Ek = k(k + 1), k = 1, . . . , N − 1. (2.28)

The eigenvectors of M̃N−1 in general involve Hahn poly-
nomials [24], and can be found explicitly in [9]. The
eigenvectors vk for N = 3, 4 will be presented in sections
III C 1 and III C 2 when we discuss the soliton solutions
for su(3) and su(4) EYM, respectively.

Therefore, we set

ω2 = b1v1, (2.29)

where v1 is a (suitably normalized) eigenvector of MN−1

with eigenvalue 2, and b1 is an arbitrary constant. From
the Einstein equations (2.12), we find that m3 and S2 are
fixed and given in terms of the ωj,2.

Expanding the gauge field functions ωj to order r2

has therefore only introduced one arbitrary parameter,
namely b1. However, it is expected that N − 1 indepen-
dent parameters will be required to describe the N − 1
independent functions ωj(r). Therefore, we must work
to higher order in r in order to introduce more arbitrary
parameters.

Considering the next order in the Yang-Mills equations

(2.9), and setting ω3 = (ω1,3, . . . , ωN−1,3)
T
, we find

MN−1ω3 = 6ω3, (2.30)

so that we may set

ω3 = b2v2, (2.31)

where b2 is an arbitrary constant and v2 is an eigenvector
of MN−1 with eigenvalue 6 (k = 2 in (2.28)). The Ein-
stein equations (2.12) are then used to determine m4 and
S3 (which will also depend on the cosmological constant
Λ).

Since we require N − 1 arbitrary parameters for the
N − 1 independent functions ωj(r), the above analysis
therefore suggests that we need to expand the ωj(r) up
to rN+1 in order to have N − 1 arbitrary parameters in
the expansion. This turns out to be the case, and a de-
tailed proof will be given elsewhere [23]. Determining the

ωk = (ω1,k, . . . , ωN−1,k)
T

for k > 3 is slightly more com-
plicated than for k = 2, 3 as outlined above. Examining
the Yang-Mills equation (2.9) to kth order, we find an
equation for the ωk+1 of the following form

[MN−1 − k (k + 1)] ωk+1 = ck+1 (2.32)

where ck+1 is a complicated vector depending on
ω1, . . . , ωk and m3, . . . , mk. For Λ = 0, the form of ck+1

is given explicitly in [9]; when Λ < 0 there are minor
modifications which we do not write here (they will be
given in [23]). Since, in later sections, we present solu-
tions just for su(3) and su(4) EYM, we will not need the
exact form of the ck+1. If vk is an eigenvector of MN−1

with eigenvalue Ek (2.28), we can solve equation (2.32)
for ωk+1:

ωk+1 = bkvk + uk+1, (2.33)
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where uk+1 is a particular solution of (2.32) chosen by re-
quiring that uk+1 is a linear combination of v1, . . . , vk−1.
It is proven in [9] that there is a unique solution of (2.32)
subject to this constraint, in the Λ = 0 case. This can
be extended to Λ < 0, but we do not present the lengthy
details here [23].

The upshot of all this analysis is that the expansion
of the fields, near the origin, is written as follows (where

ω = (ω1, . . . , ωN−1)
T
):

m(r) = m3r
3 + O(r4);

S(r) = S0 + O(r2);

ω(r) = ω0 +

N−1
∑

k=1

bkvkrk+1 + O(rN+1), (2.34)

where

ω0 =
(√

N − 1,
√

2(N − 2), . . . ,
√

(N − 1)
)T

. (2.35)

The expansions (2.34) give the field variables in terms of
the N − 1 parameters b1, . . . , bN−1 and are those which
are used in the numerical integration of the field equa-
tions in the next section.

III. SOLUTIONS

The field equations (2.9,2.12) have the following trivial

solutions. Setting ωj(r) ≡ ±
√

j(N − j) for all j gives the
Schwarzschild-adS black hole with m(r) = M = constant
(which can be set to zero to give pure adS space). Set-
ting ωj(r) ≡ 0 for all j gives the Reissner-Nordström-adS
black hole with metric function

µ(r) = 1 − 2M

r
+

Q

r2
− Λr2

3
, (3.1)

and magnetic charge Q given by

Q2 =
1

6
N (N + 1) (N − 1) . (3.2)

There is an additional special class of solutions, given by
setting

ωj(r) = ±
√

j(N − j)ω(r) ∀j = 1, . . . , N − 1. (3.3)

In this case, we follow [9] and define

λN =

√

1

6
N (N − 1) (N + 1), (3.4)

and then rescale the field variables as follows:

R = λ−1
N r; Λ̃ = λ2

NΛ;

m̃(R) = λ−1
N m(r); S̃(R) = S(r);

ω̃(R) = ω(r). (3.5)

Note that we rescale the cosmological constant Λ (this is
not necessary in [9] as there Λ = 0). The field equations

satisfied by m̃(R), S̃(R) and ω̃(R) are then

dm̃

dR
=

[

µG̃ + R2p̃θ

]

;
1

S̃

dS̃

dR
= −2G̃

R
;

0 = R2µ
d2ω̃

dR2
+

[

2m̃ − 2R3p̃θ −
2Λ̃R3

3

]

dω̃

dR

+
[

1 − ω̃2
]

ω̃, (3.6)

where we now have

µ = 1 − 2m̃

R
− Λ̃R2

3
, (3.7)

and

G̃ =

(

dω̃

dR

)2

, p̃θ =
1

2R2

(

1 − ω̃2
)2

. (3.8)

The equations (3.6) are precisely the su(2) EYM
field equations. Furthermore, the boundary conditions
(2.17,2.20,2.34) also become those for the su(2) case.
This is straightforward to see for the boundary conditions
at the horizon (2.17) or at infinity (2.20). At the origin
(2.34), the su(2) embedded solutions are given by b1 6= 0,
but b2 = . . . = bN−1 = 0. Therefore any su(2), asymp-
totically adS, EYM soliton or black hole solution can be
embedded into su(N) EYM to give another asymptoti-
cally adS soliton or black hole. We will see later in this
section how the embedded su(2) solutions fit in the solu-
tion spaces for larger N .

To find genuinely su(N) solutions, the field equa-
tions (2.9,2.12) are integrated numerically using standard
‘shooting’ techniques [25]. The equation for S(r) decou-
ples from the other Einstein equation and the Yang-Mills
equations so can be integrated separately if required. For
su(N) solutions, we therefore have N coupled ordinary
differential equations to integrate (N−1 Yang-Mills equa-
tions and one Einstein equation). For black holes, we
start integrating just outside the event horizon, using as
our shooting parameters the N variables ωj(rh), rh, sub-
ject to the weak constraint (2.19). For solitons, we start
integrating close to the origin, using as our shooting pa-
rameters the (N − 1) variables bj (2.34). In the soliton
case, there are no a priori bounds on the parameters
bj. In either case, the field equations are then integrated
outwards in the radial co-ordinate r until either the field
variables start to diverge or they have converged to the
asymptotic form at infinity.

We now turn to a detailed discussion of the solutions
we find. As well as presenting some examples of solutions,
our particular focus in this section will be the structure
of the space of solutions, as a subset of the phase space of
parameters characterizing the solutions. We will examine
the solution spaces in detail for su(3) and su(4) solitons
and black holes, focusing on the numbers of zeros of the
gauge field functions. The solution spaces we present
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may not necessarily be complete, as our approach has
been to scan the parameter space using a grid. It is
therefore possible that solutions in which the gauge field
functions have different numbers of zeros exist between
the points of our grid. However, our figures will reveal
the key features of the solution spaces. Of particular
interest will be the existence of solutions where all the
gauge field functions have no zeros.

A. su(2) solutions

We begin by reviewing the phase space of su(2) solu-
tions, in which case we have a single gauge field function
ω(r). Many of the properties we find in the phase space of
solutions for su(N), N > 2 are also seen in the su(2) case
and so it is informative to examine this simpler situation
first.

1. su(2) solitons

Near the origin, one parameter, b, is required, and the
expansion (2.34) reduces to

ω(r) = 1 + br2 + O
(

r3
)

. (3.9)

For solitons, the phase space has been studied in detail by
[26]. We have verified their results and the phase space
is shown in figure 1 (note that our parameter b in (3.9) is
equal to −b in [26]). The phase space is parameterized by
just two quantities: the cosmological constant Λ and the
shooting parameter b (3.9). The shaded regions in figure
1 indicate those values of the parameters for which we
were unable to find a regular solution all the way out to
infinity. Where we do find solutions, they occur in open
subsets of the plane. We label these open sets by n, the
number of zeros of the single gauge function ω. We draw
the reader’s attention to the following particular features
of the soliton phase space:

1. The number of zeros of the gauge field function
increases as |Λ| decreases or b decreases.

2. Solutions in which ω has no zeros occur for suffi-
ciently large |Λ|.

3. As |Λ| decreases, we find fewer solutions. The phase
space breaks up into smaller and smaller regions. In
the limit Λ → 0, we are left with solutions just at
discrete points, which are the Bartnik-McKinnon
solitons in asymptotically flat space [1].

Note that the solution with b = 0 exists for all Λ, and
simply corresponds to pure adS, with ω(r) ≡ 1.

2. su(2) black holes

We next turn to the phase space of su(2) black hole
solutions. There are now three parameters describing

FIG. 1: Phase space of soliton solutions of su(2) EYM. The
shaded area denotes those pairs (Λ, b) (where b is the shooting
parameter giving the form of the gauge field function ω near
the origin) for which no regular solution is found. The un-
shaded regions correspond to regular solutions, the number of
nodes n of the gauge field function ω being indicated for each
region. For values of b just below the region in which n = 3
we found solutions for which n = 4, but the latter region is
too small to be seen on the graph.

the solutions, rh, Λ and ω(rh). In order to plot two-
dimensional figures, we fix either rh or Λ and vary the
other two quantities. For su(2) black holes, the constraint
(2.19) on the value of the gauge field function at the event
horizon reads

(

ω(rh)2 − 1
)2

< r2
h

(

1 − Λr2
h

)

. (3.10)

Whether we are varying rh or Λ, we perform a scan over
all values of ωh which satisfy (3.10).

Firstly, we show in figure 2 the space of black hole
solutions for fixed Λ = −0.01 and varying event horizon
radius rh. The outermost curves in figure 2 are where the
inequality (3.10) is saturated. Immediately inside these
curves we have a shaded region, which represents values
of (rh, ω(rh)) for which the constraint (3.10) is satisfied,
but for which we are unable to find black hole solutions
which remain regular all the way out to infinity. As with
the solitons, where we do find solutions, we indicate in
figure 2 the number of zeros of the gauge field function
ω(r). The solution for which ω(rh) = 1 is simply the
Schwarzschild-adS black hole, while that for ω(rh) = 0 is
the magnetically charged Reissner-Nordström-adS black
hole, as described above. The following key features are
apparent from figure 2:

1. We find solutions in which the gauge field function
has more zeros as we decrease rh or ω(rh).

2. As rh → 0, the constraint (3.10) implies that
ω(rh) → 1, as can be seen in figure 2. This is
because the black hole solutions become solitons in
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FIG. 2: The space of su(2) black hole solutions when Λ =
−0.01, for varying rh. The shaded region indicates values of
the gauge field function ω(rh) at the event horizon for which
the constraint (3.10) is satisfied, but for which we find no
well-behaved black hole solution. The number of zeros n of
the gauge field function ω are indicated in those regions of the
phase space where we find black hole solutions. Elsewhere on
the diagram, the constraint (3.10) is not satisfied. Between
the region where n = 2 and the shaded region we find black
hole solutions with n = 3, 4 and 5, but these regions are too
small to indicate on the graph.

this limit, and, for solitons, we have ω(0) = 1 (3.9).
However, as can be seen in figure 1, for this value
of Λ, there are different soliton solutions, with ω
having different numbers of zeros. This feature is
not readily apparent from figure 2.

3. The phase space of solutions breaks up into smaller
regions as rh decreases.

We find similar behaviour on varying rh for different val-
ues of Λ.

We now fix the event horizon radius rh = 1 and vary
the cosmological constant Λ. The solution space in this
case is shown in figure 3, with a close-up for smaller values
of |Λ| in figure 4. Once again, in figures 3 and 4 we
have shaded those regions where the constraint (3.10)
is satisfied, but no regular black hole solutions could be
found. Where we do find solutions, the number of zeros
of the gauge field function ω(r) is indicated in the figures.
Similar behaviour is observed as in the soliton case (figure
1), namely:

1. The number of zeros of the gauge field function
increases as |Λ| or ω(rh) decreases.

2. As Λ → 0, the phase space breaks up into discrete
points, which correspond to the asymptotically flat
‘colored’ su(2) black holes [2].

FIG. 3: Phase space of su(2) black holes with rh = 1 and vary-
ing Λ. The shaded region indicates values of the gauge field
function ω(rh) at the event horizon for which the constraint
(3.10) is satisfied, but for which we find no well-behaved black
hole solution. The number of zeros n of the gauge field func-
tion ω are indicated in those regions of the phase space where
we find black hole solutions. Elsewhere on the diagram, the
constraint (3.10) is not satisfied. As well as the regions where
n = 0, . . . , 4 as marked on the diagram, we find a small region
in the bottom left of the plot where n = 5. This region is too
small to indicate on the current figure, but can be seen in
figure 4.

FIG. 4: Close-up of the phase space of su(2) black holes with
rh = 1 and smaller values of Λ. In the bottom left of the plot
there is a small region of solutions for which n = 7, but the
region is too small to be visible.

3. For sufficiently large |Λ|, we find solutions in which
the gauge field function has no zeros.
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FIG. 5: Typical su(3) black hole solution, with rh = 1, Λ =
−1, ω1(rh) = 1.2 and ω2(rh) = 1.3. In this example, both
gauge field functions have no zeros.

B. Black holes

We now turn to solutions of the su(N) EYM field equa-
tions with N > 2, considering firstly black holes and then
solitons. Many of the features of the su(2) solutions out-
lined in the previous section will be replicated for larger
N .

1. su(3) black holes

For su(3) EYM, there are two gauge field functions
ω1(r) and ω2(r), and therefore four parameters describ-
ing black hole solutions: rh, Λ, ω1(rh) and ω2(rh). Us-
ing the symmetry of the field equations (2.14), we set
ω1(rh), ω2(rh) > 0 without loss of generality. The con-
straint (2.19) on the values of the gauge field functions
at the horizon becomes, in this case:

[

ω1(rh)2 − 2
]2

+
[

ω1(rh)2 − ω2(rh)2
]2

+
[

2 − ω2(rh)2
]2

< 2r2
h

(

1 − Λr2
h

)

. (3.11)

Two typical black hole solutions are shown in figures 5
and 6. The metric functions behave in a very similar way
to the su(2) solutions [18, 19], smoothly interpolating
between their values at the horizon and at infinity. We
note that S(r) in particular converges very rapidly to
1 as r → ∞. In figure 5, we show an example of a
black hole solution in which both gauge field functions
have no zeros. We note that both gauge field functions
are monotonic, however, one is monotonically increasing
and the other monotonically decreasing. In our second
example (figure 6) both gauge field functions have three
zeros. Although, in both our examples the two gauge
field functions have the same number of zeros, we also

FIG. 6: Example of an su(3) black hole solution, with rh = 1,
Λ = −0.0001, ω1(rh) = 1.184 and ω2(rh) = 1.216. In this
case, both gauge field functions have three zeros.

find solutions where the two gauge field functions have
different numbers of zeros (see figures 8 and 9).

We now examine the space of black hole solutions.
Since we have four parameters, in order to produce two-
dimensional figures, we need to fix two parameters in
each case. We find that varying the event horizon radius
produces similar behaviour to the su(2) case, so for the
remainder of this section we fix rh = 1 and consider the
phase space for different, fixed values of Λ, scanning all
values of ω1(rh), ω2(rh) such that the constraint (3.11) is
satisfied. From the discussion at the beginning of section
III, we have embedded su(2) black hole solutions when,
from (3.3):

ω1(r) =
√

2ω(r) = ω2(r) (3.12)

which occurs when ω1(rh) = ω2(rh).
In figures 7-10 we plot the phase space of solutions

for fixed event horizon radius rh = 1 and varying cos-
mological constant Λ = −0.0001, −0.1, −1 and −5 re-
spectively. In each of figures 7-10 we plot the dashed
line ω1(rh) = ω2(rh), along which lie the embedded su(2)
black holes. It is seen in all these figures that the solution
space is symmetric about this line, as would be expected
from the symmetry (2.15) of the field equations.

As in the su(2) case, for small values of Λ (see figure
7) the solution space fragments and we find very few so-
lutions. The values of (ω1(rh), ω2(rh)) for which we find
regular black hole solutions are indicated by black dots
in figure 7. Above the main group of solutions, there
can clearly be seen a couple of smaller regions of solu-
tions. There is also a small region centered on and very
close to the dashed line at about ω1(rh) ∼ 1.27, and the

Schwarzschild-adS solution at ω1(rh) = ω2(rh) =
√

2.
For this value of Λ, we find very complicated behaviour
in the numbers of zeros (n1, n2) of the gauge field func-
tions ω1(r), ω2(r) respectively. We have found at least
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FIG. 7: Solution space for su(3) black holes with rh = 1
and Λ = −0.0001. The dashed line indicates where ω1(rh) =
ω2(rh), along which lie the embedded su(2) solutions. The
black regions indicate where we have regular black hole solu-
tions; elsewhere we find no solutions. In this case we find a
wide variety of numbers of zeros of the gauge field functions,
and so do not indicate all the different possibilities. For these
values of Λ and rh we find no solutions for which the gauge
field functions have no zeros. The key feature in this figure
is the fragmentation of the solution space and the fact that
there are comparatively few solutions.

fourteen different combinations of the numbers of zeros
of the gauge field functions, some of which occur only
in very small regions of the parameter space. This be-
haviour is too complicated to depict accurately in figure
7. The numbers of zeros of the gauge field functions vary
between 1 and 4 (we find no solutions in which either
gauge field function has no zeros). We stress that the
gauge field functions do not have to have the same num-
bers of zeros, for Λ = −0.0001 we find that |n1 − n2|
varies between 0 and 2.

The solution space is found to be symmetric about the
line ω1(rh) = ω2(rh) not only in terms of where we find
solutions, but also in terms of the numbers of zeros of the
gauge field functions. To state this precisely, suppose
that at the point ω1(rh) = a1, ω2(rh) = a2 we find a
black hole solution in which ω1(r) has n1 zeros and ω2(r)
has n2 zeros. Then, at the point ω1(r) = a2, ω2(r) = a1,
we find a black hole solution in which ω1(r) has n2 zeros
and ω1(r) has n1 zeros. This is clearly seen in figures 8
and 9, and follows from the symmetry (2.15) of the field
equations.

As we increase |Λ|, we find (see figures 8-10) that the
solution space expands as a proportion of the space of
values of ω1(rh), ω2(rh) satisfying the constraint (3.11).
It can also be seen from figures 8-10 that the number
of nodes of the gauge field functions decreases as |Λ| in-
creases, and that the space of solutions becomes simpler.

For Λ = −0.1, there is a very small region of the so-
lution space where both gauge field functions have no

FIG. 8: Solution space for su(3) black holes with rh = 1 and
Λ = −0.1. The numbers of zeros of the gauge field functions
for the various regions of the solution space are shown. For
other values of ω1(rh), ω2(rh) we find no solutions. There is
a very small region containing solutions in which both gauge
field functions have no zeros, in the top-right-hand corner of
the plot.

FIG. 9: Solution space for su(3) black holes with rh = 1 and
Λ = −1. The shaded region indicates where the constraint
(3.11) is satisfied but we do not find black hole solutions.
Outside the shaded region the constraint (3.11) does not hold.
Where there are solutions, we have indicated the numbers of
zeros of the gauge field functions within the different regions.
For this value of Λ there is a large region in which both gauge
field functions have no zeros.

zeros. This region expands as we increase |Λ|, until for
Λ = −5, both gauge field functions have no zeros for all
the solutions we find.
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FIG. 10: Solution space for su(3) black holes with rh = 1
and Λ = −5. It can be seen that for the vast majority of the
phase space for which the constraint (3.11) is satisfied, we
have black hole solutions in which both gauge field functions
have no zeros.

2. su(4) black holes

In this case there are three gauge field functions and so
the parameter space is five-dimensional. The constraint
(2.19) satisfied at the horizon by the gauge field functions
now reads:

[

ω1(rh)2 − 3
]2

+
[

ω2(rh)2 − ω1(rh)2 − 1
]2

+
[

ω3(rh)2 − ω2(rh)2 + 1
]2

+
[

3 − ω3(rh)2
]2

< 2r2
h

(

1 − Λr2
h

)

. (3.13)

An example of a typical su(4) EYM black hole was plot-
ted in [27]. The solutions have the expected features,
with the metric functions monotonically interpolating be-
tween their values on the black hole event horizon and
at infinity, and the gauge field functions having various
numbers of zeros outside the event horizon before mono-
tonically converging to their values at infinity.

Considering the solution spaces, to produce a two-
dimensional plot, we now have to fix three parameters. In
figures 11 and 12 we show examples of the solution space
when we fix Λ, rh and the value of one of the gauge field
functions at the horizon, varying the values of the other
two gauge field functions at the horizon. In both figures
11 and 12 we indicate the numbers of zeros of the three
gauge field functions for the regions where we find black
hole solutions. Elsewhere in these two figures, we do not
find black hole solutions. Now that there are three gauge
field functions, it can be seen that the structure of the
solution space is quite complicated (and gets ever more
complicated as |Λ| decreases). However, for the partic-
ular values of Λ and rh in figures 11 and 12, it can be
seen that there are solutions in which all three gauge field
functions have no zeros.

FIG. 11: Solution space for su(4) EYM black holes with rh =
1, Λ = −1 and ω1(rh) = 1.6. Where there are solutions,
the numbers of zeros of the three gauge field functions are
indicated for the relevant regions. Elsewhere in the figure we
find no black hole solutions. As well as the regions indicated,
we also find small regions where the numbers of zeros of the
gauge field functions are (n1, n2, n3) = (1, 1, 0) and (0, 1, 1).

FIG. 12: Solution space for su(4) EYM black holes with rh =
1, Λ = −1 and ω2(rh) = 1.8. Where there are solutions,
the numbers of zeros of the three gauge field functions are
indicated for the relevant regions. Elsewhere in the figure we
find no black hole solutions. As well as the regions indicated,
we also find small regions where the numbers of zeros of the
gauge field functions are (n1, n2, n3) = (1, 1, 0) and (0, 1, 1).

Many of the other features of the phase space ob-
served in the su(2) and su(3) cases are replicated here,
namely: the fragmentation of the solution space as |Λ| de-
creases; as |Λ| increases, the proportion of the parameter
space for which the constraint (3.13) is satisfied and we
have black hole solutions increases; for sufficiently large
|Λ|, we have solutions in which all gauge field functions
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FIG. 13: Solution space for su(4) EYM black holes with Λ =
−1, rh = 1 and ω1(rh) = ω3(rh). The shaded region indicates
those values of the parameters ω1(rh), ω2(rh) for which the
constraint (3.13) is satisfied, but for which we find no black
hole solutions. Where we do find black hole solutions, the
numbers of zeros of the gauge field functions are indicated
(note that n3 = n1 in this case). We have also plotted the
dashed line 4ω1(rh)2 = 3ω2(rh)2, on which lie embedded su(2)
solutions. As well as the regions marked, we also find small
regions where the numbers of zeros of the gauge field functions
are n1 = n3 = 2, n2 = 0 and n1 = n3 = 0, n2 = 2.

have no zeros. Figures 13 and 14 illustrate these fea-
tures. In both figures 13 and 14, we have used the ex-
ploited the symmetry (2.15) of the field equations and
set ω1(rh) = ω3(rh), although it should be noted, from
figures 11 and 12, that this does not need to hold (that is,
although the field equations have the symmetry (2.15),
it is not necessary for the solutions to have this symme-
try). In both figures 13 and 14, we have plotted the
line 4ω1(rh)2 = 3ω2(rh)2 = 4ω3(rh)2, on which lie the
embedded su(2) solutions (3.3). It can be seen in both
figures that the solution space is symmetric about this
line, as in the su(3) case. Figure 14 shows that it is still
the case that, for sufficiently large |Λ|, all the solutions
we find are such that all three gauge field functions have
no zeros.

Comparing figures 9 and 13, we see that the proportion
of the phase space for which the constraint (3.13) is sat-
isfied and we have black hole solutions is rather smaller
than in the su(3) case. This can be understood from
the scaling (3.5) required to embed the su(2) solutions
into su(3) EYM. From (3.5), an su(2) black hole solution
with cosmological constant Λ and event horizon radius
rh is embedded into su(3) as a solution with cosmolog-
ical constant 4Λ and event horizon radius rh/2 (since
λ3 = 2 (3.4)), and into su(4) as a solution with cosmo-

logical constant 10Λ and event horizon radius rh/
√

10

(since λ4 =
√

10 (3.4)). This scaling means that, for
larger N , larger Λ values are needed to find the same

FIG. 14: Solution space for su(4) EYM black holes with
Λ = −10, rh = 1 and ω1(rh) = ω3(rh). The shaded re-
gion indicates those values of the parameters ω1(rh), ω2(rh)
for which the constraint (3.13) is satisfied, but for which we
find no black hole solutions. In this case, for all the black hole
solutions we find, all three gauge field functions have no zeros.
We have also plotted the dashed line 4ω1(rh)2 = 3ω2(rh)2, on
which lie embedded su(2) solutions.

behaviour as is observed at smaller Λ values in the su(2)
case.

C. Solitons

The behaviour of the gauge field functions near the
origin (2.34) makes finding numerical soliton solutions
of the field equations (2.9,2.12) more complicated than
finding black hole solutions. We define new variables
β1(r), . . . βN−1(r) which have the following behaviour
near the origin:

βj(r) = bjr
j+1 +O

(

rj+2
)

, j = 1, . . . , N −1; (3.14)

where the bj are the constants in the expansion of ω(r)
(2.34). Therefore the gauge field functions take the form

ω(r) = ω0 +

N−1
∑

k=1

βk(r)vk. (3.15)

For each N , we proceed as follows. Firstly, the normal-
ized eigenvectors vk of the matrix MN−1 (2.25) are cal-
culated. We then have the ωj(r) in terms of the βk(r)
from (3.15). The expressions (3.15) are substituted into
the field equations (2.9,2.12) to give differential equations
for the βk(r). The Yang-Mills equations for the βk(r)
will be given explicitly for su(3) below. For the Einstein
equations, the quantity G (2.13) becomes

G =

N−1
∑

k=1

β′2
k , (3.16)
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because we have normalized the eigenvectors vk. The
quantity pθ (2.10) takes a complicated form in terms of
the βk(r) (which we do not write here), but is readily
computed in Maple. Further details of this procedure in
the su(3) and su(4) cases will be outlined below.

Many of the features of the solution space for black
holes are seen also in the soliton solution spaces. In par-
ticular, the solution space becomes more complicated as
|Λ| decreases, eventually reducing to the asymptotically
flat solution space as Λ → 0. As |Λ| increases, we find
more solutions and, for sufficiently large |Λ|, we find so-
lutions in which all the gauge field functions have no ze-
ros. In the following subsections, we have focused on the
structure of the solution spaces for smaller values of |Λ|
where there are more features.

1. su(3) solitons

In su(3) EYM, the matrix MN−1 (2.25) with N = 3
takes the form

M2 =

(

4 −2
−2 4

)

. (3.17)

It is straightforward to confirm that the eigenvalues of
M2 are 2, 6, with corresponding normalized eigenvectors

v1 =
1√
2

(

1
1

)

; v2 =
1√
2

(

1
−1

)

. (3.18)

As described above, we therefore write the gauge field
functions as follows, from (3.15):

(

ω1(r)
ω2(r)

)

=

( √
2√
2

)

+
1√
2

(

β1(r) + β2(r)
β1(r) − β2(r)

)

. (3.19)

The Yang-Mills equations (2.9) then give the following
equations for the βk(r):

0 = r2µβ′′

1 +

(

2m − 2r3pθ −
2Λr3

3

)

β′

1

−1

4
(2 + β1)

(

β2
1 + 4β1 + 7β2

2

)

;

0 = r2µβ′′

2 +

(

2m − 2r3pθ −
2Λr3

3

)

β′

2

−1

4

(

7β2
1 + 28β1 + β2

2 + 24
)

β2; (3.20)

where, in this case, the expression for pθ (2.10) is not too
complicated:

pθ =
1

8r4

[

(

β2
1 + 4β1 + β2

2

)2

+48β2
2 + 48β1β

2
2 + 12β2

1β
2
2

]

. (3.21)

We then numerically integrate the field equations
(2.12,3.20) with the initial conditions (3.14). The so-
lution space is described by three parameters: Λ, b1 and
b2.

FIG. 15: Typical su(3) soliton solution, with Λ = −0.1, b1 =
0.35 and b2 = 0.115. The gauge field function ω1(r) has two
zeros, while ω2(r) has no zeros.

FIG. 16: Solution space for su(3) solitons with Λ = −0.1.
Where we find solutions, the numbers of zeros of the gauge
field functions are indicated. Elsewhere in the parameter
space we do not find solutions. For this value of Λ, there
is a very small region (near the origin) of solutions in which
both gauge field functions have no zeros. Although they are
too small to show on this figure, we also find regions where
the numbers of zeros of the gauge field functions are n1 = 3
(with n2 ∈ (0, 1, 2, 3)) or n2 = 3 (with n1 ∈ (0, 1, 2, 3)).

A typical soliton solution is shown in figure 15. In
figure 15, we have plotted the auxiliary functions β1(r)
and β2(r) as well as the physical field quantities m(r),
S(r), ω1(r) and ω2(r). It can be seen that all variables
have the expected behaviour, both near the origin and
at infinity. At infinity, the βk(r) functions converge to
constant values, which can be arbitrary (since the values
of the gauge field functions ωj(r) at infinity (2.20) are
arbitrary).

The solution spaces for two particular values of Λ are
shown in figures 16 and 17. The origin b1 = 0 = b2
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FIG. 17: Solution space for su(3) solitons with Λ = −1.
Where we find solutions, the numbers of zeros of the gauge
field functions are indicated. Elsewhere in the parameter
space we do not find solutions. We now have a much larger
region of solutions in which both gauge field functions have
no zeros.

corresponds to pure adS space. In both figures 16 and
17, we see that the solution space is symmetric about the
axis b2 = 0. This is due to the symmetry (2.15) of the
field equations, since the mapping b2 → −b2 effectively
swaps ω1(r) and ω2(r) from (3.19). In both figures we see
a region of solutions in which both gauge field functions
have no zeros, but the size of this region increases for
larger |Λ|.

2. su(4) solitons

In su(4) EYM, the matrix MN−1 (2.25) reads

M3 =





6 −
√

12 0

−
√

12 8 −
√

12

0 −
√

12 6



 , (3.22)

and has eigenvalues 2, 6 and 12 (2.28) and normalized
eigenvectors

v1 =
1√
10





√
3

2√
3



 ; v2 =
1√
2





1
0
−1



 ;

v3 =
1√
5





1

−
√

3
1



 . (3.23)

The gauge field functions therefore take the form (3.15):




ω1

ω2

ω3



 =





√
3

2√
3



 +
1√
10





√
3β1 +

√
5β2 +

√
2β3

2β1 −
√

6β3√
3β1 −

√
5β2 +

√
2β3



 .

(3.24)

FIG. 18: Typical su(4) soliton solution, with Λ = −10, b1 =
−1.2, b2 = −0.1 and b3 = −0.01. We plot just the auxiliary
functions βk(r) and the gauge field functions ωj(r). In this
example, all three gauge field functions have no zeros. Note
that β3(r) is not identically zero, it monotonically increases
to 6.41 × 10−2 as r → ∞.

The expressions for the Yang-Mills equations (2.9) and pθ

(2.10) are now quite lengthy and so we do not reproduce
them here. We now have a four-dimensional parameter
space: Λ, b1, b2 and b3.

A typical su(4) soliton solution is shown in figure 18. In
figure 18 we have plotted just the gauge field functions
ωj(r) and the auxiliary functions βk(r), as the metric
functions have similar behaviour to that seen in, for ex-
ample, figure 15. In figure 18, all three gauge field func-
tions have no zeros. For this large value of |Λ|, we find
soliton solutions for a wide range of values of b1, all with
the three gauge field functions having no zeros. However,
we also find that b2 and b3 have rather smaller ranges over
which we find solutions. This can be seen in the next two
figures.

In figures 19 and 20, we show the solution spaces of
solitons for Λ = −1, for b2 = 0 and b3 = 0 respectively.
In each case we have indicated the numbers of zeros of
the gauge field functions in those regions where we find
solutions. Elsewhere, no solutions are found. The solu-
tion space in figure 19 is not symmetric about the axis
b3 = 0, but, in figure 20 the solution space is symmetric
about the axis b2 = 0. This is expected from the form of
the gauge field functions ωj(r) in terms of the auxiliary
functions βk(r) (3.24). It will be seen from figures 19 and
20 that, for this value of Λ, we have many solutions in
which all three gauge field functions have no zeros.

IV. CONCLUSIONS

In this paper we have presented new soliton and hairy
black hole solutions of su(N) Einstein-Yang-Mills theory
with a negative cosmological constant. Our solutions are
purely magnetic, so that the gauge field functions are in
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FIG. 19: Solution space for su(4) solitons with Λ = −1 and
b2 = 0. Where we find solutions, the numbers of zeros of the
gauge field functions are indicated for the relevant regions.
For other values of the parameters b1 and b3, we do not find
solutions. Note that the solution space is not symmetric about
the axis b3 = 0.

FIG. 20: Solution space for su(4) solitons with Λ = −1 and
b3 = 0. Where we find solutions, the numbers of zeros of the
gauge field functions are indicated for the relevant regions.
For other values of the parameters b1 and b2, we do not find
solutions. In contrast to figure 19, in this case the solution
space is symmetric about the axis b2 = 0.

general described by N − 1 functions, giving N − 1 inde-
pendent degrees of freedom. This gives, in total, N + 1
parameters (N −1 from the gauge fields, plus the cosmo-
logical constant Λ and the event horizon radius rh, the
latter being zero for soliton solutions) which characterize
the solutions. We have developed the formalism for find-
ing solutions for arbitrary N , and have discussed in some
detail the properties of the solution space for N = 3, 4.

Although the spaces of solutions get progressively more

complicated as N increases, the key features are those
also found in the su(2) case, namely

1. Solutions exist in continuous open subsets of the
phase space;

2. As |Λ| → 0, the solution space fragments and ap-
proaches the discrete solution space in asymptoti-
cally flat space;

3. For sufficiently large |Λ|, we have solutions in which
all N − 1 gauge field functions have no zeros.

The last item is of particular interest. The existence of
these solutions, for sufficiently large |Λ|, can be proved
analytically [23]. In the su(2) case, it is known that
at least some of the solutions in which the gauge field
function has no zeros, for sufficiently large |Λ|, are lin-
early stable, both under spherically symmetric [18, 19]
and non-spherically symmetric [20] linear perturbations.
We have seen how su(2) solutions can be embedded into
su(N) EYM, and the first question is whether those solu-
tions which are stable as solutions of su(2) EYM remain
stable when considered as solutions of su(N) EYM. We
will show in a separate publication that this is indeed
the case [23], and, furthermore, that there are genuinely
su(N) solutions, in a neighborhood of these embedded
su(2) solutions, which are also stable under linear, spher-
ically symmetric perturbations. The analysis is rather
involved so we do not describe it further here. The ques-
tion of non-spherically symmetric perturbations remains
open at this stage.

Other interesting open questions remain. Firstly, there
is evidence [28] that solutions to su(∞) exist in adS, at
least for sufficiently large |Λ|. The field equations for
su(∞) are rather different in structure from those for
su(N), with the infinite number of ordinary differential
YM equations being replaced by a partial differential
equation [28]. Therefore different numerical techniques
will be required to solve the field equations. However,
the fact (to be proved in [23]) that there are soliton and
hairy black hole solutions in su(N) EYM for any N sug-
gests that non-trivial solutions of su(∞) EYM may in-
deed exist. This leaves open the interesting possibility of
giving a black hole infinite amounts of gauge field hair.
Secondly, we have not examined the question of whether
there are topological black hole solutions of su(N) EYM,
generalizing the topological su(2) black holes found in
[29], but we anticipate that such solutions exist. All
k = 0 su(2) EYM topological black holes are known
to be stable as are at least some of the k = −1 solu-
tions [29], so the stability of any su(N) EYM topological
black holes would also be of particular interest. Finally,
there is the question of the implication of our solutions
for the adS/CFT correspondence [17]. A black hole with
a particular mass and magnetic charge measured at in-
finity in adS can now be either an abelian, magnetically-
charged, Reissner-Nordstrom-adS black hole or any one
of a number of su(N) EYM black holes with different
N . We would expect that, in analogy with the su(2) case
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[30], there are su(N) solutions in some super-gravity the-
ories, which will be even more puzzling in the context of
adS/CFT. It would also be interesting to study the cor-
responding picture in higher dimensions [31]. We hope
to return to these issues in the near future.
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