91 research outputs found

    Simulation of indivisible qubit channels in collision models

    Full text link
    A sequence of controlled collisions between a quantum system and its environment (composed of a set of quantum objects) naturally simulates (with arbitrary precision) any Markovian quantum dynamics of the system under consideration. In this paper we propose and study the problem of simulation of an {\it arbitrary} quantum channel via collision models. We show that a correlated environment is capable to simulate {\it non-Markovian} evolutions leading to any indivisible qubit channel. In particular, we derive the corresponding master equation generating a continuous time non-Markovian dynamics implementing the universal NOT gate being an example of the most non-Markovian quantum channels.Comment: 6 pages, 2 figures, submitted to JP

    Another Short and Elementary Proof of Strong Subadditivity of Quantum Entropy

    Full text link
    A short and elementary proof of the joint convexity of relative entropy is presented, using nothing beyond linear algebra. The key ingredients are an easily verified integral representation and the strategy used to prove the Cauchy-Schwarz inequality in elementary courses. Several consequences are proved in a way which allow an elementary proof of strong subadditivity in a few more lines. Some expository material on Schwarz inequalities for operators and the Holevo bound for partial measurements is also included.Comment: The proof given here is short and more elementary that in either quant-ph/0404126 or quant-ph/0408130. The style is intended to be suitable to classroom presentation. For a Much More Complicated approach, see Section 6 of quant-ph/050619

    How to correct small quantum errors

    Full text link
    The theory of quantum error correction is a cornerstone of quantum information processing. It shows that quantum data can be protected against decoherence effects, which otherwise would render many of the new quantum applications practically impossible. In this paper we give a self contained introduction to this theory and to the closely related concept of quantum channel capacities. We show, in particular, that it is possible (using appropriate error correcting schemes) to send a non-vanishing amount of quantum data undisturbed (in a certain asymptotic sense) through a noisy quantum channel T, provided the errors produced by T are small enough.Comment: LaTeX2e, 23 pages, 6 figures (3 eps, 3 pstricks

    Quantum correlations and distinguishability of quantum states

    Full text link
    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.Comment: Review article, 103 pages, to appear in J. Math. Phys. 55 (special issue: non-equilibrium statistical mechanics, 2014

    A characterization of positive linear maps and criteria of entanglement for quantum states

    Full text link
    Let HH and KK be (finite or infinite dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from B(H){\mathcal B}(H) into B(K){\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is give which shows that a state ρ\rho on HKH\otimes K is separable if and only if (ΦI)ρ0(\Phi\otimes I)\rho\geq 0 for all positive finite rank elementary operators Φ\Phi. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.Comment: 20 page

    Quantum Markov Channels for Qubits

    Get PDF
    We examine stochastic maps in the context of quantum optics. Making use of the master equation, the damping basis, and the Bloch picture we calculate a non-unital, completely positive, trace-preserving map with unequal damping eigenvalues. This results in what we call the squeezed vacuum channel. A geometrical picture of the effect of stochastic noise on the set of pure state qubit density operators is provided. Finally, we study the capacity of the squeezed vacuum channel to transmit quantum information and to distribute EPR states.Comment: 18 pages, 4 figure

    Multiplicativity of completely bounded p-norms implies a new additivity result

    Full text link
    We prove additivity of the minimal conditional entropy associated with a quantum channel Phi, represented by a completely positive (CP), trace-preserving map, when the infimum of S(gamma_{12}) - S(gamma_1) is restricted to states of the form gamma_{12} = (I \ot Phi)(| psi >< psi |). We show that this follows from multiplicativity of the completely bounded norm of Phi considered as a map from L_1 -> L_p for L_p spaces defined by the Schatten p-norm on matrices; we also give an independent proof based on entropy inequalities. Several related multiplicativity results are discussed and proved. In particular, we show that both the usual L_1 -> L_p norm of a CP map and the corresponding completely bounded norm are achieved for positive semi-definite matrices. Physical interpretations are considered, and a new proof of strong subadditivity is presented.Comment: Final version for Commun. Math. Physics. Section 5.2 of previous version deleted in view of the results in quant-ph/0601071 Other changes mino

    Gaussian Quantum Information

    Get PDF
    The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.Comment: 51 pages, 7 figures, submitted to Reviews of Modern Physic

    Relations for certain symmetric norms and anti-norms before and after partial trace

    Full text link
    Changes of some unitarily invariant norms and anti-norms under the operation of partial trace are examined. The norms considered form a two-parametric family, including both the Ky Fan and Schatten norms as particular cases. The obtained results concern operators acting on the tensor product of two finite-dimensional Hilbert spaces. For any such operator, we obtain upper bounds on norms of its partial trace in terms of the corresponding dimensionality and norms of this operator. Similar inequalities, but in the opposite direction, are obtained for certain anti-norms of positive matrices. Through the Stinespring representation, the results are put in the context of trace-preserving completely positive maps. We also derive inequalities between the unified entropies of a composite quantum system and one of its subsystems, where traced-out dimensionality is involved as well.Comment: 11 pages, no figures. A typo error in Eq. (5.15) is corrected. Minor improvements. J. Stat. Phys. (in press

    Electron Cooling Experiments in CSR

    Get PDF
    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou(HIRFL-CSR), the ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400MeV/u 12C6+ and 200MeV/u 129Xe54+ was stored and cooled in the experimental ring CSRe, the cooling force was measured in different condition.Comment: 5 pages 11 figure
    corecore