35 research outputs found

    Survival in severe alpha-1-antitrypsin deficiency (PiZZ)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies of the natural history of alpha-1-antitrypsin (AAT) deficiency are mostly based on highly selected patients. The aim of this study was to analyse the mortality of PiZZ individuals.</p> <p>Methods</p> <p>Data from 1339 adult PiZZ individuals from the Swedish National AAT Deficiency Registry, followed from 1991 to 2008, were analysed. Forty-three percent of these individuals were identified by respiratory symptoms (respiratory cases), 32% by liver diseases and other diseases (non-respiratory cases) and 25% by screening (screened cases). Smoking status was divided into two groups: smokers 737 (55%) and 602 (45%) never-smokers.</p> <p>Results</p> <p>During the follow-up 315 individuals (24%) died. The standardised mortality rate (SMR) for respiratory cases was 4.70 (95% Confidence Interval (CI) 4.10-5.40), 3.0 (95%CI 2.35-3.70) for the non-respiratory cases and 2.30 (95% CI 1.46-3.46) for the screened cases. The smokers had a higher mortality risk than never-smokers, with a SMR of 4.80 (95%CI 4.20-5.50) for the smokers and 2.80(95%CI 2.30-3.40) for the never-smokers. The Rate Ratio (RR) was 1.70 (95% CI 1.35-2.20). Also among the screened cases, the mortality risk for the smokers was significantly higher than in the general Swedish population (SMR 3.40 (95% CI 1.98-5.40).</p> <p>Conclusion</p> <p>Smokers with severe AAT deficiency, irrespective of mode of identification, have a significantly higher mortality risk than the general Swedish population.</p

    A multidisciplinary approach to identify priority areas for the monitoring of a vulnerable family of fishes in Spanish Marine National Parks

    Get PDF
    Background Syngnathid fishes (Actinopterygii, Syngnathidae) are flagship species strongly associated with seaweed and seagrass habitats. Seahorses and pipefishes are highly vulnerable to anthropogenic and environmental disturbances, but most species are currently Data Deficient according to the IUCN (2019), requiring more biological and ecological research. This study provides the first insights into syngnathid populations in the two marine Spanish National Parks (PNIA—Atlantic- and PNAC—Mediterranean). Fishes were collected periodically, marked, morphologically identified, analysed for size, weight, sex and sexual maturity, and sampled for stable isotope and genetic identification. Due the scarcity of previous information, habitat characteristics were also assessed in PNIA. Results Syngnathid diversity and abundance were low, with two species identified in PNIA (Hippocampus guttulatus and Syngnathus acus) and four in PNAC (S. abaster, S. acus, S. typhle and Nerophis maculatus). Syngnathids from both National Parks (NP) differed isotopically, with much lower δ15N in PNAC than in PNIA. The dominant species were S. abaster in PNAC and S. acus in PNIA. Syngnathids preferred less exposed sites in macroalgal assemblages in PNIA and Cymodocea meadows in PNAC. The occurrence of very large specimens, the absence of small-medium sizes and the isotopic comparison with a nearby population suggest that the population of Syngnathus acus (the dominant syngnathid in PNIA) mainly comprised breeders that migrate seasonally. Mitochondrial cytochrome b sequence variants were detected for H. guttulatus, S. acus, and S. abaster, and a novel 16S rDNA haplotype was obtained in N. maculatus. Our data suggest the presence of a cryptic divergent mitochondrial lineage of Syngnathus abaster species in PNAC. Conclusions This is the first multidisciplinary approach to the study of syngnathids in Spanish marine NPs. Habitat preferences and population characteristics in both NPs differed. Further studies are needed to assess the occurrence of a species complex for S. abaster, discarding potential misidentifications of genus Syngnathus in PNAC, and evaluate migratory events in PNIA. We propose several preferential sites in both NPs for future monitoring of syngnathid populations and some recommendations for their conservation.Postprin

    Tukey-like pairwise comparisons among variances

    No full text

    The optimal discovery procedure: a new approach to simultaneous significance testing

    No full text
    The Neyman-Pearson lemma provides a simple procedure for optimally testing a single hypothesis when the null and alternative distributions are known. This result has played a major role in the development of significance testing strategies that are used in practice. Most of the work extending single-testing strategies to multiple tests has focused on formulating and estimating new types of significance measures, such as the false discovery rate. These methods tend to be based on "p"-values that are calculated from each test individually, ignoring information from the other tests. I show here that one can improve the overall performance of multiple significance tests by borrowing information across all the tests when assessing the relative significance of each one, rather than calculating "p"-values for each test individually. The 'optimal discovery procedure' is introduced, which shows how to maximize the number of expected true positive results for each fixed number of expected false positive results. The optimality that is achieved by this procedure is shown to be closely related to optimality in terms of the false discovery rate. The optimal discovery procedure motivates a new approach to testing multiple hypotheses, especially when the tests are related. As a simple example, a new simultaneous procedure for testing several normal means is defined; this is surprisingly demonstrated to outperform the optimal single-test procedure, showing that a method which is optimal for single tests may no longer be optimal for multiple tests. Connections to other concepts in statistics are discussed, including Stein's paradox, shrinkage estimation and the Bayesian approach to hypothesis testing. Copyright 2007 Royal Statistical Society.
    corecore