596 research outputs found

    The Dark Kinase Knowledgebase: An online compendium of knowledge and experimental results of understudied kinases

    Get PDF
    Kinases form the backbone of numerous cell signaling pathways, with their dysfunction similarly implicated in multiple pathologies. Further facilitated by their druggability, kinases are a major focus of therapeutic development efforts in diseases such as cancer, infectious disease and autoimmune disorders. While their importance is clear, the role or biological function of nearly one-third of kinases is largely unknown. Here, we describe a data resource, the Dark Kinase Knowledgebase (DKK; https://darkkinome.org), that is specifically focused on providing data and reagents for these understudied kinases to the broader research community. Supported through NIH\u27s Illuminating the Druggable Genome (IDG) Program, the DKK is focused on data and knowledge generation for 162 poorly studied or \u27dark\u27 kinases. Types of data provided through the DKK include parallel reaction monitoring (PRM) peptides for quantitative proteomics, protein interactions, NanoBRET reagents, and kinase-specific compounds. Higher-level data is similarly being generated and consolidated such as tissue gene expression profiles and, longer-term, functional relationships derived through perturbation studies. Associated web tools that help investigators interrogate both internal and external data are also provided through the site. As an evolving resource, the DKK seeks to continually support and enhance knowledge on these potentially high-impact druggable targets

    Terahertz response of patterned epitaxial graphene

    Get PDF
    We study the interaction between polarized terahertz (THz) radiation and micro-structured large-area graphene in transmission geometry. In order to efficiently couple the radiation into the two-dimensional material, a lateral periodic patterning of a closed graphene sheet by intercalation doping into stripes is chosen. We observe unequal transmittance of the radiation polarized parallel and perpendicular to the stripes. The relative contrast, partly enhanced by Fabry-Perot oscillations reaches 20 %. The effect even increases up to 50 % when removing graphene stripes in analogy to a wire grid polarizer. The polarization dependence is analyzed in a large frequency range from < 80 GHz to 3 THz, including the plasmon-polariton resonance. The results are in excellent agreement with theoretical calculations based on the electronic energy spectrum of graphene and the electrodynamics of the patterned structureThe authors thank J. Jobst for fruitful discussions. The research was performed in the framework of the Sonderforschungsbereich 953 "Synthetic carbon allotropes", funded by Deutsche Forschungsgemeinschaft. We acknowledge support from the EC under Graphene Flagship (contract no. CNECT-ICT-604391)

    Virus shapes and buckling transitions in spherical shells

    Full text link
    We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells, produces excellent one parameter fits in real space to the full three-dimensional shape of large spherical viruses. The faceted shape depends only on the dimensionless Foppl-von Karman number \gamma=YR^2/\kappa, where Y is the two-dimensional Young's modulus of the protein shell, \kappa is its bending rigidity and R is the mean virus radius. The shape can be parameterized more quantitatively in terms of a spherical harmonic expansion. We also investigate elastic shell theory for extremely large \gamma, 10^3 < \gamma < 10^8, and find results applicable to icosahedral shapes of large vesicles studied with freeze fracture and electron microscopy.Comment: 11 pages, 12 figure

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction

    Get PDF
    Large-scale protein signalling networks are useful for exploring complex biochemical pathways but do not reveal how pathways respond to specific stimuli. Such specificity is critical for understanding disease and designing drugs. Here we describe a computational approach—implemented in the free CNO software—for turning signalling networks into logical models and calibrating the models against experimental data. When a literature-derived network of 82 proteins covering the immediate-early responses of human cells to seven cytokines was modelled, we found that training against experimental data dramatically increased predictive power, despite the crudeness of Boolean approximations, while significantly reducing the number of interactions. Thus, many interactions in literature-derived networks do not appear to be functional in the liver cells from which we collected our data. At the same time, CNO identified several new interactions that improved the match of model to data. Although missing from the starting network, these interactions have literature support. Our approach, therefore, represents a means to generate predictive, cell-type-specific models of mammalian signalling from generic protein signalling networks
    corecore