3,403 research outputs found

    Cell death regulation in Drosophila: Conservation of mechanism and unique insights

    Get PDF
    Programmed cell death, or apoptosis, is a genetically encoded form of cell suicide that results in the orderly death and phagocytic removal of excess, damaged, or dangerous cells during normal development and in the adult. The cellular machinery required to carry out apoptosis is present in most, if not all cells, but is only activated in cells instructed to die (for review see Jacobson et al. 1997). Here, we review cell death regulation in the fly in the context of a first pass look at the complete Drosophila genome and what is known about death regulation in other organisms, particularly worms and vertebrates

    Climate hypersensitivity to solar forcing?

    No full text
    International audienceWe compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot) and solar UV (SUV). The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models) that may better capture radiative and dynamical couplings of the troposphere and stratosphere

    Climate hypersensitivity to solar forcing?

    Get PDF

    Sodium Diffusion through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation

    Get PDF
    To investigate the effect of hydration on the diffusion of sodium ions through the aluminum-doped zeolite BEA system (Si/Al = 30), we used the grand canonical Monte Carlo (GCMC) method to predict the water absorption into aluminosilicate zeolite structure under various conditions of vapor pressure and temperature, followed by molecular dynamics (MD) simulations to investigate how the sodium diffusion depends on the concentration of water molecules. The predicted absorption isotherm shows first-order-like transition, which is commonly observed in hydrophobic porous systems. The MD trajectories indicate that the sodium ions diffuse through zeolite porous structures via hopping mechanism, as previously discussed for similar solid electrolyte systems. These results show that above 15 wt % hydration (good solvation regime) the formation of the solvation cage dramatically increases sodium diffusion by reducing the hopping energy barrier by 25% from the value of 3.8 kcal/mol observed in the poor solvation regime

    Magnetic tests for magnetosome chains in Martian meteorite ALH84001

    Get PDF
    Transmission electron microscopy studies have been used to argue that magnetite crystals in carbonate from Martian meteorite ALH84001 have a composition and morphology indistinguishable from that of magnetotactic bacteria. It has even been claimed from scanning electron microscopy imaging that some ALH84001 magnetite crystals are aligned in chains. Alignment of magnetosomes in chains is perhaps the most distinctive of the six crystallographic properties thought to be collectively unique to magnetofossils. Here we use three rock magnetic techniques, low-temperature cycling, the Moskowitz test, and ferromagnetic resonance, to sense the bulk composition and crystallography of millions of ALH84001 magnetite crystals. The magnetic data demonstrate that although the magnetite is unusually pure and fine-grained in a manner similar to terrestrial magnetofossils, most or all of the crystals are not arranged in chains

    A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye

    Get PDF
    Regulated cell death and survival play important roles in neural development. Extracellular signals are presumed to regulate seven apparent caspases to determine the final structure of the nervous system. In the eye, the EGF receptor, Notch, and intact primary pigment and cone cells have been implicated in survival or death signals. An antibody raised against a peptide from human caspase 3 was used to investigate how extracellular signals controlled spatial patterning of cell death. The antibody crossreacted specifically with dying Drosophila cells and labelled the activated effector caspase Drice. It was found that the initiator caspase Dronc and the proapoptotic gene head involution defective were important for activation in vivo. Dronc may play roles in dying cells in addition to activating downstream effector caspases. Epistasis experiments ordered EGF receptor, Notch, and primary pigment and cone cells into a single pathway that affected caspase activity in pupal retina through hid and Inhibitor of Apoptosis Proteins. None of these extracellular signals appeared to act by initiating caspase activation independently of hid. Taken together, these findings indicate that in eye development spatial regulation of cell death and survival is integrated through a single intracellular pathway

    Solar Flare Intermittency and the Earth's Temperature Anomalies

    Full text link
    We argue that earth's short-term temperature anomalies and the solar flare intermittency are linked. The analysis is based upon the study of the scaling of both the spreading and the entropy of the diffusion generated by the fluctuations of the temperature time series. The joint use of these two methods evidences the presence of a L\'{e}vy component in the temporal persistence of the temperature data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean monthly temperature datasets cover the period from 1856 to 2002.Comment: 4 pages, 5 figure

    Understanding sport tourists' motives and perceptions of Sabah, Malaysia as a sport tourist destination

    Get PDF
    With the focus on Mount Kinabalu as a sport tourism destination, the push and pull theory (Dann, 1981) was adopted as framework to examine the travel motivation of sport tourists visiting Sabah, Malaysia. The Leisure Motivation Scale (Beard & Ragheb, 1983) and semantic differential instrument by Attle (1996) were utilized to measure the push motives and pull factors. Analyses of data include descriptive statistics, t-test and logistic regression. A sample of 195 mountain climbers was selected with the majority comprising of international active sport tourists respondents (71.1%). Statistically, domestic active sport tourists at Mount Kinabalu were more significantly motivated by two out of four push motives namely; competence-mastery and social factors. With respect to the pull factors, analysis of result from the logistic regression shows there were few attributes which has been identified to be perceived differently by the domestic and international tourists. The findings of the study implied that: (1) market segmentations can be made according to the demographic and travel characteristics information as well as by their travel motivations among domestics and internationals sport tourists; (2) theoretical significance and practical marketing implications in addition with the recommendations for local tourism authority, destination managers and marketers are discussed
    corecore