526 research outputs found

    Antibiotic susceptibility and ability to form biofilm of Listeria monocytogenes strains isolated from frozen vegetables

    Get PDF
    L. monocytogenes poses a serious threat to public health, since most cases of listeriosis are connected with eating contaminated food. L. monocytogenes is often detected both in fresh and frozen vegetables. The aim of this study was to evaluate the antibiotic susceptibility and ability to form biofilm of L. monocytogenes strains isolated from frozen vegetable mixtures in Poland. Ninetynine genetically different strains were found among 100 isolates of L. monocytogenes. Among the 99 strains, 80 (80.8%) were susceptible to all tested antibiotics. Nineteen (19.2%) strains were resistant to one or more antibiotics. From this group of L. monocytogenes strains, most strains were resistant to erythromycin (16; 16,1%), penicillin (15; 15.1%), meropenem (12; 12.1%), cotrimoxazole (12; 12.1%), and ampicillin (3; 3.1%). According to the obtained results, differences in intensity of biofilm, both between those isolated in successive years and in the particular year, were observed. Performed analysis showed statistically insignificant faint negative correlation (r=–0.088) between the number of antibiotics to which strains were resistant and the intensity of biofilm formation by them. Food contamination with L. monocytogenes poses a threat to consumers, therefore it is necessary to monitor their antibiotic susceptibility, ability to form biofilm, and genetic similarity, in order to evaluate the strains persistence time in plant

    Proportional Rankings

    Full text link
    In this paper we extend the principle of proportional representation to rankings. We consider the setting where alternatives need to be ranked based on approval preferences. In this setting, proportional representation requires that cohesive groups of voters are represented proportionally in each initial segment of the ranking. Proportional rankings are desirable in situations where initial segments of different lengths may be relevant, e.g., hiring decisions (if it is unclear how many positions are to be filled), the presentation of competing proposals on a liquid democracy platform (if it is unclear how many proposals participants are taking into consideration), or recommender systems (if a ranking has to accommodate different user types). We study the proportional representation provided by several ranking methods and prove theoretical guarantees. Furthermore, we experimentally evaluate these methods and present preliminary evidence as to which methods are most suitable for producing proportional rankings

    Line-Up Elections: Parallel Voting with Shared Candidate Pool

    Full text link
    We introduce the model of line-up elections which captures parallel or sequential single-winner elections with a shared candidate pool. The goal of a line-up election is to find a high-quality assignment of a set of candidates to a set of positions such that each position is filled by exactly one candidate and each candidate fills at most one position. A score for each candidate-position pair is given as part of the input, which expresses the qualification of the candidate to fill the position. We propose several voting rules for line-up elections and analyze them from an axiomatic and an empirical perspective using real-world data from the popular video game FIFA.Comment: Accepted to SAGT 202

    Using muon rings for the optical throughput calibration of the SST-1M prototype for the Cherenkov Telescope Array

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) are ground-based instruments devoted to the study of very high energy gamma-rays coming from space. The detection technique consists of observing images created by the Cherenkov light emitted when gamma rays, or more generally cosmic rays, propagate through the atmosphere. While in the case of protons or gamma-rays the images present a filled and more or less elongated shape, energetic muons penetrating the atmosphere are visualised as characteristic circular rings or arcs. A relatively simple analysis of the ring images allows the reconstruction of all the relevant parameters of the detected muons, such as the energy, the impact parameter, and the incoming direction, with the final aim to use them to calibrate the total optical throughput of the given IACT telescope. We present the results of preliminary studies on the use of images created by muons as optical throughput calibrators of the single mirror small size telescope prototype SST-1M proposed for the Cherenkov Telescope Array.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    SDWFS-MT-1: A Self-Obscured Luminous Supernova at z~0.2

    Get PDF
    We report the discovery of a six-month-long mid-infrared transient, SDWFS-MT-1 (aka SN 2007va), in the Spitzer Deep, Wide-Field Survey of the NOAO Deep Wide-Field Survey Bootes field. The transient, located in a z=0.19 low luminosity (M_[4.5]~-18.6 mag, L/L_MilkyWay~0.01) metal-poor (12+log(O/H)~7.8) irregular galaxy, peaked at a mid-infrared absolute magnitude of M_[4.5]~-24.2 in the 4.5 micron Spitzer/IRAC band and emitted a total energy of at least 10^51 ergs. The optical emission was likely fainter than the mid-infrared, although our constraints on the optical emission are poor because the transient peaked when the source was "behind" the Sun. The Spitzer data are consistent with emission by a modified black body with a temperature of ~1350 K. We rule out a number of scenarios for the origin of the transient such as a Galactic star, AGN activity, GRB, tidal disruption of a star by a black hole and gravitational lensing. The most plausible scenario is a supernova exploding inside a massive, optically thick circumstellar medium, composed of multiple shells of previously ejected material. If the proposed scenario is correct, then a significant fraction (~10%) of the most luminous supernova may be self-enshrouded by dust not only before but also after the supernova occurs. The spectral energy distribution of the progenitor of such a supernova would be a slightly cooler version of eta Carina, peaking at 20-30 microns.Comment: 26 pages, 5 figures, 1 table, accepted for publication in Ap

    DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array

    Full text link
    The SST-1M is one of three prototype small-sized telescope designs proposed for the Cherenkov Telescope Array, and is built by a consortium of Polish and Swiss institutions. The SST-1M will operate with DigiCam - an innovative, compact camera with fully digital read-out and trigger electronics. A high level of integration will be achieved by massively deploying state-of-the-art multi-gigabit transmission channels, beginning from the ADC flash converters, through the internal data and trigger signals transmission over backplanes and cables, to the camera's server link. Such an approach makes it possible to design the camera to fit the size and weight requirements of the SST-1M exactly, and provide low power consumption, high reliability and long lifetime. The structure of the digital electronics will be presented, along with main physical building blocks and the internal architecture of FPGA functional subsystems.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array

    Full text link
    The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton telescope and is among the proposed telescope designs for the Cherenkov Telescope Array (CTA). It is conceived to provide the high-energy (>> few TeV) coverage. The SST-1M contains proven technology for the telescope structure and innovative electronics and photosensors for the camera. Its design is meant to be simple, low-budget and easy-to-build industrially. Each device subsystem of an SST-1M telescope is made visible to CTA through a dedicated industrial standard server. The software is being developed in collaboration with the CTA Medium-Size Telescopes to ensure compatibility and uniformity of the array control. Early operations of the SST-1M prototype will be performed with a subset of the CTA central array control system based on the Alma Common Software (ACS). The triggered event data are time stamped, formatted and finally transmitted to the CTA data acquisition. The software system developed to control the devices of an SST-1M telescope is described, as well as the interface between the telescope abstraction to the CTA central control and the data acquisition system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Prototype of the SST-1M Telescope Structure for the Cherenkov Telescope Array

    Full text link
    A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the Cherenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589
    corecore