281 research outputs found

    An ultrahigh-speed digitizer for the Harvard College Observatory astronomical plates

    Full text link
    A machine capable of digitizing two 8 inch by 10 inch (203 mm by 254 mm) glass astrophotographic plates or a single 14 inch by 17 inch (356 mm by 432 mm) plate at a resolution of 11 microns per pixel or 2309 dots per inch (dpi) in 92 seconds is described. The purpose of the machine is to digitize the \~500,000 plate collection of the Harvard College Observatory in a five year time frame. The digitization must meet the requirements for scientific work in astrometry, photometry, and archival preservation of the plates. This paper describes the requirements for and the design of the subsystems of the machine that was developed specifically for this task.Comment: 12 pages, 9 figures, 1 table; presented at SPIE (July, 2006) and published in Proceeding

    A new bright z = 6.82 quasar discovered with VISTA: VHS J0411-0907

    Get PDF
    We present the discovery of a new z6.8z \sim 6.8 quasar discovered with the near-IR VISTA Hemisphere Survey (VHS) which has been spectroscopically confirmed by the ESO New Technology Telescope (NTT) and the Magellan telescope. This quasar has been selected by spectral energy distribution (SED) classification using near infrared data from VISTA, optical data from Pan-STARRS, and mid-IR data from WISE. The SED classification algorithm is used to statistically rank two classes; foreground Galactic low-mass stars and high redshift quasars, prior to spectroscopic observation. Forced photometry on Pan-STARRS pixels for VHS J0411-0907 allows to improve the SED classification reduced-χ2\chi^2 and photometric redshift. VHS J0411-0907 (z=6.82z=6.82, yAB=20.1y_{AB} = 20.1 mag, JAB=20.0J_{AB} = 20.0 mag) has the brightest J-band continuum magnitude of the nine known quasars at z>6.7z > 6.7 and is currently the highest redshift quasar detected in the Pan-STARRS survey. This quasar has one of the lowest black hole mass (MBH=(6.13±0.51)×108MM_{\rm{BH}}= (6.13 \pm 0.51)\times 10^8\:\mathrm{M_{\odot}}) and the highest Eddington ratio (2.37±0.222.37\pm0.22) of the known quasars at z>6.5z>6.5. The high Eddington ratio indicates that some very high-zz quasars are undergoing super Eddington accretion. We also present coefficients of the best polynomials fits for colours vs spectral type on the Pan-STARRS, VISTA and WISE system for MLT dwarfs and present a forecast for the expected numbers of quasars at z>6.5z>6.5

    Discovery of three z>6.5 quasars in the VISTA Kilo-degree Infrared Galaxy (VIKING) survey

    Get PDF
    Studying quasars at the highest redshifts can constrain models of galaxy and black hole formation, and it also probes the intergalactic medium in the early universe. Optical surveys have to date discovered more than 60 quasars up to z~6.4, a limit set by the use of the z-band and CCD detectors. Only one z>6.4 quasar has been discovered, namely the z=7.08 quasar ULAS J1120+0641, using near-infrared imaging. Here we report the discovery of three new z>6.4 quasars in 332 square degrees of the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the number from 1 to 4. The newly discovered quasars have redshifts of z=6.60, 6.75, and 6.89. The absolute magnitudes are between -26.0 and -25.5, 0.6-1.1 mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the MgII emission line in all three objects. The quasars are powered by black holes with masses of ~(1-2)x10^9 M_sun. In our probed redshift range of 6.44<z<7.44 we can set a lower limit on the space density of supermassive black holes of \rho(M_BH>10^9 M_sun) > 1.1x10^(-9) Mpc^(-3). The discovery of three quasars in our survey area is consistent with the z=6 quasar luminosity function when extrapolated to z~7. We do not find evidence for a steeper decline in the space density of quasars with increasing redshift from z=6 to z=7.Comment: 14 pages, 9 figures. Published in Ap

    The Gaseous Environment of High-z Galaxies: Precision Measurements of Neutral Hydrogen in the Circumgalactic Medium of z ~ 2-3 Galaxies in the Keck Baryonic Structure Survey

    Full text link
    We present results from the Keck Baryonic Structure Survey (KBSS), a unique spectroscopic survey designed to explore the connection between galaxies and intergalactic baryons. The KBSS is optimized for the redshift range z ~ 2-3, combining S/N ~ 100 Keck/HIRES spectra of 15 hyperluminous QSOs with densely sampled galaxy redshift surveys surrounding each QSO sightline. We perform Voigt profile decomposition of all 6000 HI absorbers within the full Lya forest in the QSO spectra. Here we present the distribution, column density, kinematics, and absorber line widths of HI surrounding 886 star-forming galaxies with 2.0 < z < 2.8 and within 3 Mpc of a QSO sightline. We find that N_HI and the multiplicity of HI components increase rapidly near galaxies. The strongest HI absorbers within ~ 100 physical kpc of galaxies have N_HI ~ 3 dex higher than those near random locations in the IGM. The circumgalactic zone of most enhanced HI absorption (CGM) is found within 300 kpc and 300 km/s of galaxies. Nearly half of absorbers with log(N_HI) > 15.5 are found within the CGM of galaxies meeting our photometric selection, while their CGM occupy only 1.5% of the cosmic volume. The spatial covering fraction, multiplicity of absorption components, and characteristic N_HI remain elevated to transverse distances of 2 physical Mpc. Absorbers with log(N_HI) > 14.5 are tightly correlated with the positions of galaxies, while absorbers with lower N_HI are correlated only on Mpc scales. Redshift anisotropies on Mpc scales indicate coherent infall toward galaxies, while on scales of ~100 physical kpc peculiar velocities of 260 km/s are indicated. The median Doppler widths of absorbers within 1-3 virial radii of galaxies are ~50% larger than randomly chosen absorbers of the same N_HI, suggesting higher gas temperatures and/or increased turbulence likely caused by accretion shocks and/or galactic winds.Comment: Accepted to Ap

    The Keck+Magellan Survey for Lyman Limit Absorption II: A Case Study on Metallicity Variations

    Full text link
    We present an absorption line analysis of the Lyman limit system (LLS) at z=3.55 in our Magellan/MIKE spectrum of PKS2000-330. Our analysis of the Lyman limit and full HI Lyman series constrains the total HI column density of the LLS (N_HI = 10^[18.0 +/- 0.25] cm^{-2} for b_HI >= 20 km/s) and also the N_HI values of the velocity subsystems comprising the absorber. We measure ionic column densities for metal-line transitions associated with the subsystems and use these values to constrain the ionization state (>90% ionized) and relative abundances of the gas. We find an order of magnitude dispersion in the metallicities of the subsystems, marking the first detailed analysis of metallicity variations in an optically thick absorber. The results indicate that metals are not well mixed within the gas surrounding high zz galaxies. Assuming a single-phase photoionization model, we also derive an N_H-weighted metallicity, = -1.66 +/- 0.25, which matches the mean metallicity in the neutral ISM in high z damped Lya systems (DLAs). Because the line density of LLSs is ~10 times higher than the DLAs, we propose that the former dominate the metal mass-density at z~3 and that these metals reside in the galaxy/IGM interface. Considerations of a multi-phase model do not qualitatively change these conclusions. Finally, we comment on an anomalously large O^0/Si^+ ratio in the LLS that suggests an ionizing radiation field dominated by soft UV sources (e.g. a starburst galaxy). Additional abundance analysis is performed on the super-LLS systems at z=3.19.Comment: 20 pages, 7 figures (most in color). Accepted to Ap

    Sizes, Shapes, and Correlations of Lyman Alpha Clouds and Their Evolution in the CDM+Λ+\Lambda Universe

    Full text link
    This study analyzes the sizes, shapes and correlations of \lya clouds produced by a hydrodynamic simulation of a spatially flat CDM universe with a non-zero cosmological constant (Ω0=0.4\Omega_0=0.4, Λ0=0.6\Lambda_0=0.6, σ8=0.79\sigma_8 =0.79), over the redshift range 2z42\le z \le 4. The \lya clouds range in size from several kiloparsecs to about a hundred kiloparsecs in proper units, and they range in shape from roundish, high column density regions with \nhi\ge 10^{15} cm^{-2} to low column density sheet-like structures with \nhi \le 10^{13} cm^{-2} at z=3. The most common shape found in the simulation resembles that of a flattened cigar. The physical size of a typical cloud grows with time roughly as (1+z)3/2(1+z)^{-3/2} while its shape hardly evolves (except for the most dense regions ρcut>30\rho_{cut}>30). Our result indicates that any simple model with a population of spheres (or other shapes) of a uniform size is oversimplified; if such a model agrees with observational evidence, it is probably only by coincidence. We also illustrate why the use of double quasar sightlines to set lower limits on cloud sizes is useful only when the perpendicular sightline separation is small (Δr50h1\Delta r \le 50h^{-1} kpc). Finally, we conjecture that high column density \lya clouds (\nhi\ge 10^{15} cm^{-2}) may be the progenitors of the lower redshift faint blue galaxies. This seems plausible because their correlation length, number density (extrapolated to lower redshift) and their masses are in fair agreement with those observed.Comment: ApJ, in press, 34 pages, 21 figures, figs (1a,b,c) can be at http://astro.princeton.edu/~cen/LYASSC/lyassc.htm

    SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-Forming Galaxy IC 2163

    Get PDF
    SPIRITS---SPitzer InfraRed Intensive Transients Survey---is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer/IRAC. We present the discovery and follow-up observations of one of our most luminous (M[4.5]=17.1±0.4M_{[4.5]} = -17.1\pm0.4 mag, Vega) and red ([3.6][4.5]=3.0±0.2[3.6] - [4.5] = 3.0 \pm 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 (D35.5D\approx35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (8400\approx 8400 km s1^{-1}), double-peaked emission line of He I at 1.083μ1.083 \mum, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of 200\approx 200 days. Assuming AV=2.2A_V = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The IR light curves and the extreme [3.6][4.5][3.6]-[4.5] color cannot be explained using only a standard extinction law. Another luminous (M4.5=16.1±0.4M_{4.5} = -16.1\pm0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting 80\gtrsim 80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by AV1.5A_V \approx 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest 18%\gtrsim 18\% of nearby core-collapse SNe are missed by currently operating optical surveys.Comment: 19 pages, 7 Figures, 4 Table

    Spectroscopic Discovery of the Broad-Lined Type Ic Supernova 2010bh Associated with the Low-Redshift GRB 100316D

    Full text link
    We present the spectroscopic discovery of a broad-lined Type Ic supernova (SN 2010bh) associated with the nearby long-duration gamma-ray burst (GRB) 100316D. At z = 0.0593, this is the third-nearest GRB-SN. Nightly optical spectra obtained with the Magellan telescopes during the first week after explosion reveal the gradual emergence of very broad spectral features superposed on a blue continuum. The supernova features are typical of broad-lined SNe Ic and are generally consistent with previous supernovae associated with low-redshift GRBs. However, the inferred velocities of SN 2010bh at 21 days after explosion are a factor of ~2 times larger than those of the prototypical SN 1998bw at similar epochs, with v ~ 26,000 km/s, indicating a larger explosion energy or a different ejecta structure. A near-infrared spectrum taken 13.8 days after explosion shows no strong evidence for He I at 1.083 microns, implying that the progenitor was largely stripped of its helium envelope. The host galaxy is of low luminosity (M_R ~ -18.5 mag) and low metallicity (Z < 0.4 Z_solar), similar to the hosts of other low-redshift GRB-SNe.Comment: 6 pages, 4 figures, 1 table, submitted to ApJ Letter

    Extremely metal-poor gas at a redshift of 7

    Get PDF
    In typical astrophysical environments, the abundance of heavy elements ranges from 0.001 to 2 times the solar value. Lower abundances have been seen in selected stars in the Milky Way’s halo and in two quasar absorption systems at redshift z = 3 (ref. 4). These are widely interpreted as relics from the early Universe, when all gas possessed a primordial chemistry. Before now there have been no direct abundance measurements from the first billion years after the Big Bang, when the earliest stars began synthesizing elements. Here we report observations of hydrogen and heavy-element absorption in a spectrum of a quasar at z =  7.04, when the Universe was just 772 million years old (5.6 per cent of its present age). We detect a large column of neutral hydrogen but no corresponding metals (defined as elements heavier than helium), limiting the chemical abundance to less than 1/10,000 times the solar level if the gas is in a gravitationally bound proto-galaxy, or to less than 1/1,000 times the solar value if it is diffuse and unbound. If the absorption is truly intergalactic, it would imply that the Universe was neither ionized by starlight nor chemically enriched in this neighbourhood at z ≈ 7. If it is gravitationally bound, the inferred abundance is too low to promote efficient cooling, and the system would be a viable site to form the predicted but as yet unobserved massive population III stars
    corecore