399 research outputs found

    Assessing accuracy and precision for space-based measurements of carbon dioxide: An associated statistical methodology revisited

    Get PDF
    Analyzing retrieval accuracy and precision is an important element of spaceā€based CO_2 retrievals. However, this error analysis is sometimes challenging to perform rigorously because of the subtlety of Multivariate Statistics. To help address this issue, we revisit some fundamentals of Multivariate Statistics that help reveal the statistical essence of the associated error analysis. We show that the related statistical methodology is useful for revealing the intrinsic discrepancy and relation between the retrieval error for a nonzeroā€variate CO_2 state and that for a zeroā€variate one. Our study suggests that the two scenarios essentially yield the sameā€magnitude accuracy, while the latter scenario yields a better precision than the former. We also use this methodology to obtain a rigorous framework systematically and explore a broadly used approximate framework for analyzing CO_2 retrieval errors. The approximate framework introduces errors due to an essential, but often forgotten, fact that a priori climatology in reality is never equal to the true state. Due to the nature of the problem considered, realistic numerical simulations that produce synthetic spectra may be more appropriate than remote sensing data for our specific exploration. As highlighted in our retrieval simulations, utilizing the approximate framework may not be universally satisfactory in assessing the accuracy and precision of X_(co_2) retrievals (with errors up to 0.17ā€“0.28ā€‰ppm and 1.4ā€“1.7ā€‰ppm, respectively, at SNRā€‰=ā€‰400). In situ measurements of CO_2 are needed to further our understanding of this issue and related implications

    Stratospheric aircraft exhaust plume and wake chemistry studies

    Get PDF
    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3

    Assessing accuracy and precision for space-based measurements of carbon dioxide: An associated statistical methodology revisited

    Get PDF
    Analyzing retrieval accuracy and precision is an important element of spaceā€based CO_2 retrievals. However, this error analysis is sometimes challenging to perform rigorously because of the subtlety of Multivariate Statistics. To help address this issue, we revisit some fundamentals of Multivariate Statistics that help reveal the statistical essence of the associated error analysis. We show that the related statistical methodology is useful for revealing the intrinsic discrepancy and relation between the retrieval error for a nonzeroā€variate CO_2 state and that for a zeroā€variate one. Our study suggests that the two scenarios essentially yield the sameā€magnitude accuracy, while the latter scenario yields a better precision than the former. We also use this methodology to obtain a rigorous framework systematically and explore a broadly used approximate framework for analyzing CO_2 retrieval errors. The approximate framework introduces errors due to an essential, but often forgotten, fact that a priori climatology in reality is never equal to the true state. Due to the nature of the problem considered, realistic numerical simulations that produce synthetic spectra may be more appropriate than remote sensing data for our specific exploration. As highlighted in our retrieval simulations, utilizing the approximate framework may not be universally satisfactory in assessing the accuracy and precision of X_(co_2) retrievals (with errors up to 0.17ā€“0.28ā€‰ppm and 1.4ā€“1.7ā€‰ppm, respectively, at SNRā€‰=ā€‰400). In situ measurements of CO_2 are needed to further our understanding of this issue and related implications

    CO_2 in the upper troposphere: Influence of stratosphere-troposphere exchange

    Get PDF
    A two-dimensional transport model constrained to measured surface CO_2 concentrations was used to simulate the spatial and temporal variation of CO_2 in the atmosphere for the period from 1975 to 2004. We find that the amplitude, phase and shape of the CO_2 seasonal cycle vary as a function of both altitude and latitude. Cross tropopause exchanges, especially the downward branch of the Brewer-Dobson circulation, which brings stratospheric air to the upper troposphere at middle and high latitudes, change the CO_2 concentration and seasonal cycle in the extra-tropics. The model results match recent aircraft measurements of CO_2 in the upper troposphere (Matsueda et al., 2002) remarkably well. We conclude that upper tropospheric CO_2 volume mixing ratios will provide a valuable tool for validating vertical transport. The implications of the CO_2 variation caused by the stratosphere-troposphere exchange for remote sensing of CO_2 are discussed

    Ambulatory Blood Pressure Monitoring in Individuals with HIV: A Systematic Review and Meta-Analysis

    Get PDF
    Introduction Abnormal diurnal blood pressure (BP) rhythms may contribute to the high cardiovascular disease risk in HIV-positive (HIV+) individuals. To synthesize the current literature on ambulatory BP monitoring (ABPM) in HIV+ individuals, a systematic literature review and meta-analysis were performed. Methods Medical databases were searched through November 11, 2015 for studies that reported ABPM results in HIV+ individuals. Data were extracted by 2 reviewers and pooled differences between HIV+ and HIV-negative (HIV-) individuals in clinic BP and ABPM measures were calculated using random-effects inverse variance weighted models. Results Of 597 abstracts reviewed, 8 studies with HIV+ cohorts met the inclusion criteria. The 420 HIV+ and 714 HIV- individuals in 7 studies with HIV- comparison groups were pooled for analyses. The pooled absolute nocturnal systolic and diastolic BP declines were 3.16% (95% confidence interval [CI]: 1.13%, 5.20%) and 2.92% (95% CI: 1.64%, 4.19%) less, respectively, in HIV+ versus HIV- individuals. The pooled odds ratio for non-dipping systolic BP (nocturnal systolic BP decline <10%) in HIV+ versus HIV- individuals was 2.72 (95% CI: 1.92, 3.85). Differences in mean clinic, 24-hour, daytime, or nighttime BP were not statistically significant. I2 and heterogeneity chi-squared statistics indicated the presence of high heterogeneity for all outcomes except percent DBP dipping and non-dipping SBP pattern. Conclusions An abnormal diurnal BP pattern may be more common among HIV+ versus HIV- individuals. However, results were heterogeneous for most BP measures, suggesting more research in this area is needed

    PCSK9 variation and association with blood pressure in African Americans: Preliminary findings from the HyperGEN and REGARDS studies

    Get PDF
    Proprotein convertase subtilisin/kexin type 9 (encoded by PCSK9) plays a well-known role in the regulation of low-density lipoprotein (LDL) receptors, and an inhibitor of this enzyme is a promising new therapeutic for hyperlipidemia. Recently, animal and human studies also implicate PCSK9 genetic variation in the regulation of blood pressure. The goal of this study was to examine if common and rare polymorphisms in PCSK9 are associated with blood pressure in an African-American population at high risk for cardiovascular disease. Using genomic data assayed on the Affymetrix 6.0 array (n = 1199) and the Illumina HumanExome Beadchip (n = 1966) from the Hypertension Genetic Epidemiology Network (HyperGEN), we tested the association of PCSK9 polymorphisms with blood pressure. We used linear mixed models and the sequence kernel association test (SKAT) to assess the association of 31 common and 19 rare variants with blood pressure. The models were adjusted for age, sex, center, smoking status, principal components for ancestry and diabetes as fixed effects and family as a random effect. The results showed a marginally significant effect of two genome-wide association study (GWAS) single-nucleotide polymorphisms (SNPs) (rs12048828: Ī² = 1.8, P = 0.05 and rs9730100: Ī² = 1.0, P = 0.05) with diastolic blood pressure (DBP); however these results were not significant after correction for multiple testing. Rare variants were cumulatively associated with DBP (P = 0.04), an effect that was strengthened by restriction to nonsynonymous or stop-gain SNPs (P = 0.02). While gene-based results for DBP did not replicate (P = 0.36), we found an association with SBP (P = 0.04) in the Reasons for Geographic And Racial Differences in Stroke study (REGARDS). The findings here suggest rare variants in PCSK9 may influence blood pressure among African Americans, laying the ground work for further validation studies
    • ā€¦
    corecore