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Abstract Analyzing retrieval accuracy and precision is an important element of space-based CO2

retrievals. However, this error analysis is sometimes challenging to perform rigorously because of the
subtlety of Multivariate Statistics. To help address this issue, we revisit some fundamentals of Multivariate
Statistics that help reveal the statistical essence of the associated error analysis. We show that the related
statistical methodology is useful for revealing the intrinsic discrepancy and relation between the retrieval
error for a nonzero-variate CO2 state and that for a zero-variate one. Our study suggests that the two
scenarios essentially yield the same-magnitude accuracy, while the latter scenario yields a better precision
than the former. We also use this methodology to obtain a rigorous framework systematically and explore a
broadly used approximate framework for analyzing CO2 retrieval errors. The approximate framework
introduces errors due to an essential, but often forgotten, fact that a priori climatology in reality is never equal
to the true state. Due to the nature of the problem considered, realistic numerical simulations that produce
synthetic spectra may be more appropriate than remote sensing data for our specific exploration. As
highlighted in our retrieval simulations, utilizing the approximate framework may not be universally
satisfactory in assessing the accuracy and precision of Xco2 retrievals (with errors up to 0.17–0.28 ppm and
1.4–1.7 ppm, respectively, at SNR= 400). In situ measurements of CO2 are needed to further our
understanding of this issue and related implications.

1. Introduction

Optimal estimation theory (OET) [Rodgers, 1976, 2000] has been extensively applied for the remote sensing or
ground-based retrieval of atmospheric quantities such as greenhouse gas (GHG) [Saitoh et al., 2009; Buchwitz
et al., 2012; Yoshida et al., 2011]. This method combines measurements and a priori information to obtain a
stable optimal retrieval using a Bayesian approach. The error analysis of OET is a crucial component for the
remote sensing retrieval of CO2. Associated with this, this note is motivated by the following three
considerations.

1. In applying the OET for retrieving the atmospheric CO2, it is often difficult to achieve a coherent and sys-
tematic error analysis for retrievals (e.g., this may contribute to the problem proposed in point 2 below).
This is partially because the related analysis is based on sophisticated Multivariate Statistics [e.g.,
Anderson, 2003]. However, as far as we know, an explicit and careful illustration of the associated funda-
mentals of Multivariate Statistics has rarely been included in the literature of the remote sensing of
CO2. Many OET practitioners just use some conclusions derived fromMultivariate Statistics without know-
ing the conditions that these conclusions are based on, which may often cause problems. Thus, the asso-
ciated statistical methodology is worthy of revisiting, which is one of the main motivations of this study. In
this note we elucidate the statistical fundamentals that can be essential for the understanding of the
mathematical nature of the related error analysis. However, we are motivated bymore than a pedagogical
goal. Our results can be practical and useful tools in performing the error analysis for retrieval of CO2, as
shown in this manuscript.

2. For remote sensing retrievals via OET, it is known that the deviation of a priori climatology from the true
state causes complications for the error analysis. Regarding this effect, the retrievals of H2O, CO, O3, and
CH4 using TES observations provide valuable references [e.g., Kulawik et al., 2006; Worden et al., 2004]
(see also the Appendix A). However, we note that numerous, but not all [e.g., Rodgers and Connor,
2003; Connor et al., 2008; Cressie et al., 2016], error analyses for the retrieval of CO2 do not explicitly
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emphasize or discuss this effect by applying an approximate framework (detailed in sections 2 and 3).
In this note, we explore this issue utilizing fundamental Multivariate Statistics and numerical experi-
ments, although note that our exploration is not exhaustive due to the complication of the problem
considered. Our primary results suggest that using the approximate framework may not deliver uni-
versally satisfactory performance compared to the rigorous framework. However, due to the nature
of the problem considered, we demonstrate that the rigorous framework itself requires complete
knowledge of the to-be-retrieved true state. This by definition is impossible to achieve in real-world
remote sensing although possible to do in numerical simulations, as in this study, or with in situ mea-
surements. Consequently, we argue that the widely used approximate framework is a useful approx-
imation in real-world remote sensing (detailed at the end of section 2). This, however, does not
change the fact that the approximate framework may cause nonnegligible errors in the error analysis.
Further, these nonnegligible errors may not be straightforward to evaluate in reality. To our knowl-
edge, the above message is often not well understood by many OET practitioners and is hence
worthy a note.

3. The soundings for a nonzero-variate CO2 state and for a zero-variate CO2 state (snapshot state) are two
important scenarios for satellite measurement [e.g., Buchwitz et al., 2012; Wunch et al., 2011]. In this note
we explore the intrinsic difference and connection between these two scenarios in the error analysis of
CO2 retrievals based on statistical methodology mentioned in point 1. This approach is new and provides
insights on applications in other types of error analysis.

To elucidate the three points above, it is useful to briefly introduce the essence of OET, following Rodgers
[2000] and his notations except otherwise mentioned. The measurement vector y can be described by a
physically based forward model F(x):

y ¼ f xð Þ þ ε: (1)

The forward model F(x) in equation (1) typically consists of three major modules: a radiative transfer code,
a solar model, and an instrument model [e.g., Bösch et al., 2006]. The uncertainties in the forward model
parameters (nonretrieved and retrieved) can contribute to the error of retrieval: e.g., due to uncertainties
in aerosol optical depth, surface pressure, instrument parameters, spectroscopic, and calibration para-
meters [Li et al., 2016; Bösch et al., 2006]. Their associated effects can be represented/parameterized in ε
[e.g., Reuter et al., 2010, Table 1; O’Dell et al., 2012, equation (2); Bowman et al., 2002, 2006]. How to accu-
rately perform this representation/parameterization is a serious issue and is often challenging [e.g., Kuang
et al., 2002, O’Dell et al., 2012]. For example, Kuang et al. [2002] and Bowman et al. [2006] assume a perfect
forward model for their specific research purpose. Thus, ε in equation (1) is an error vector comprising the
measurement error and the forward model error. Our methodology, which is derived based on equation (1),
is in principle applicable to the analysis of the forward model error, although in this study we choose not
to explicitly analyze this contribution but focus on the measurement error.

The vectors y and ε both have a dimensionm (i.e.,m is the total number of measurement elements, e.g., spec-
tral channels). Here x is the state vector to be retrieved, with a dimension n. Following the notation of
Multivariate Statistics [e.g., Anderson, 2003; Härdle and Simar, 2007; Tabachnick and Fidell, 2013], if a random
vector z has p elements and obeys a multivariate normal (Gaussian) distribution with a mean μ and a covar-
iance matrix Σ, this distribution is denoted as z~Np(μ, Σ). Typically as a good approximation, the error ε in
equation (1) is commonly assumed to obey the following normal distribution:

ε∼Nm 0; Sεð Þ; (2)

where Sε is the error covariance matrix of the measurement. Our study follows O’Dell et al. [2012] and
Bowman et al. [2002, 2006], by parameterizing the error covariance (Sε) to be zero-mean and Gaussian
diagonal for the convenience of our multivariate statistical analysis. This parameterization certainly does
not faithfully represent the forward model uncertainties but is appropriate for the specific purpose of
our study. The meanings of all mathematical symbols in this manuscript are listed in Table 1 as an
easy/quick reference for the reader.

The measurements and the forward model generally cannot guarantee a unique mapping from x to y or vice
versa, partly due to the inevitable uncertainty as represented by ε. Therefore, a simple-minded approach of
inverting equation (1) often leads to unphysical solutions [e.g., Rodgers, 2000, section 1.3]. To fix this
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problem, it is crucial to employ some a priori knowledge about the distribution of the state vector x, which is
commonly described by Gaussian statistics:

x∼Nn xa; Sað Þ: (3)

Here xa is the a priori mean state vector, and Sa is the a priori covariance matrix. This a priori distribution pro-
vides an important constraint for the retrieval of x, in addition to the constraint from the measurements. The
OET retrieval solution, denoted as x̂, can be derived by iterative steps that seek to minimize the cost function:

χ2 ¼ ½y � F xð Þ�TS�1ε y � F xð Þ½ � þ x � xað ÞT S�1a x � xað Þ: (4)

The weighting function is usually denoted by K= [Ki,j] = [∂Fi/∂xj]. Using linearization via a Taylor series, Rodgers
[2000] (see his equations (2.27) and (2.44)) derives the first-order distribution of the optimal solution as below:

x∼Nn x̂ ; Ŝ
� �

; (5)

where the terms are expressed by

Ŝ ¼ KTS�1ε K þ S�1a
� ��1

(6)

and

x̂ ¼ ŜS�1a xa þ ŜKTS�1ε Kx þ ŜKTS�1ε ε: (7)

Here Ŝ is the retrieval (posterior) covariance matrix and x̂ is the retrieval solution. From (7) it is straightforward
to obtain the expression for the retrieval quality (retrieval error), i.e., the deviation of the retrieval solution x̂
from the true state x, as below:

x̂ � x ¼ ŜS�1a xa � ŜS�1a x þ ŜKTS�1ε ε: (8)

Again, Table 1 explains all mathematical symbols in this manuscript as a quick reference for the reader.

Equation (8) is the starting point of our analysis for CO2 retrieval errors. In section 2 we illustrate the statistical
fundamentals that help characterize the mathematical nature of the associated error analysis. We use the
related statistical methodology to systematically deliver a rigorous framework of error analysis, the results
of which are demonstrated to be consistent with previous studies as shown in the Appendix A. Specifically in
section 3, we quantify the potential errors introduced when treating a priori climatology same as the true
state. This is a widely applied approximate framework and we compare it with a rigorously derived bench-
mark framework. By the nature of the problem considered, realistic numerical simulation may have

Table 1. The Meanings of Various Mathematical Symbols for Quick Reference

z ~NP(μ, Σ) z is a P-element random vector that follows normal/Gaussian distribution with a mean μ and
a covariance Σ

x the state vector/scalar to be retrieved
y the measurement vector
ε the measurement error vector
Sε the covariance matrix of the measurement error
xa the a priori mean state for x, the best evaluation for xc before measurements/retrievals
Sa the a priori covariance matrix for x, the best evaluation for Sc before measurements/retrievals
K the weighting function matrix
x̂ the retrieval solution
x̂ � x the deviation of the retrieval solution x̂ from the true state x, i.e., the retrieval quaility (retrieval

error)
xc the mean of the distribution of true state x
Sc the covariance matrix of the distribution of true state x
Ŝ the (posterior) covariance matrix of retrieval quality according to the approximate framework

equation (14), expressed by equation (6)
Ŝ S�1a ScS�1a þ KTS�1ε K
� �

Ŝ the (posterior) covariance matrix of retrieval quality according to the rigorous framework
equation (13)

ŜS�1a xa � xcð Þ the accuracy of retrieval quality according to the rigorous framework equation (13)

h a vector representing the vertical pressure-weighted averaging
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advantage over remote sensing measurements for our specific purpose. In section 4, we quantify the intrinsic
difference and connection of error analysis between the scenario of the sounding for a nonzero-variate CO2

state and that for a zero-variate CO2 state. We draw conclusions and discussions in section 5.

2. Fundamentals of Multivariate Statistics

To facilitate the estimation of atmospheric CO2 fluxes and transport, GHG satellite missions, such as OCO-2
[e.g., Frankenberg et al., 2015; Crisp et al., 2016], aim to retrieve column-averaged CO2 dry air mole fraction
(Xco2) with a precision ~1 ppm (part per million) and an accuracy ~0.2 ppm at certain spatial and temporal
scales, e.g., for an ~1000 km×1000 km region (or smaller scalelike 1–100 km) at semimonthly to monthly
intervals [Miller et al., 2007; Buchwitz et al., 2012]. The variability/distribution of the true CO2 state under these
spatial and temporal scales is assumed to obey multivariate Gaussian statistics:

x∼Nn xc; Scð Þ; (9)

where xc is the mean and Sc is the covariance of the true CO2 state distribution (following the notation of
Rodgers and Connor [2003]). Here Gaussian statistics is a widely used, albeit incomplete assumption (see
discussion in Bowman et al. [2002], Kulawik et al. [2006]). This true state distribution (9) is to be retrieved
and is in theory best evaluated by the a priori distribution (3) before measurement. Thus, the a priori
provides one constraint for the retrieval, while the measurement provides another constraint such
that the retrieval solution x̂ (see its expression above equation (14)) typically approaches closer to the true
state (9) than the a priori (3) does. But most likely, the retrieval solution bx cannot reach the true state: Only
when we have perfect measurements (i.e., Sε→ 0), equation (6) becomes bS ∼ KTS�1ε K

� ��1
→0 and it is

straightforward to obtain that bx ~Nn(xc, Sc). This means that the retrievals x̂ can completely recover
the true state (9) only when the measurement errors are zero, which, however, is an unrealistic
situation. Therefore, xc and Sc in real-world retrievals are always unknown (again, best evaluated by the
a priori xa and Sa before measurements), although in numerical simulations they can be prescribed to
be physical ones (as if they are known) for our specific purpose (as in section 3 for our purpose of a rig-
orous error analysis).

Therefore, the true CO2 state x and the retrieved CO2 state bx are both variable vectors. The former obeys the
distribution (9). The latter, as a function of x and ε as from (7), obeys a distribution determined by (7), (2), and
(9). Their difference, i.e., the retrieval quality (retrieval error), (bx � x) given by (8), is also a variable vector and
obeys a certain distribution. Quantifying this distribution of retrieval quality, as we examine in this note, is a
vital component for the remote sensing of CO2 [e.g., Buchwitz et al., 2012]. However, this distribution has a
sophisticatedmultivariate dependency on (8), (2), and (9), a systematic analysis of which is difficult to perform
without utilizing Multivariate Statistics [e.g., Härdle and Simar, 2007]. An important point of this paper is
that a more realistic error analysis of CO2 retrieval should be based on strict Multivariate Statistics. To
our knowledge, Multivariate Statistics, due to its complexity, is often not well understood by some OET
practitioners, which is a key element that prevents them from achieving a more correct error analysis.
Therefore, it is necessary to include a revisit of Multivariate Statistics, which is not new in the community
of statistics but is not well recognized in the community of CO2 remote sensing.

Without loss of generality, let x be a (n× 1) vector that follows a multivariate normal distribution x∼Nn x; Sð Þ
and K be a (m× n) constant matrix. From Theorem 2.4.5 of Anderson [2003], Kx is then distributed as

Kx ∼Nm Kx;KSKT
� �

: (10a)

This theorem tells us that multivariate normality is preserved under any linear transformations. See Anderson
[2003] for the proof of this theorem.

As an extension of the theorem (10a), let c be a (m× 1) constant vector. From Theorem 5.2 of Härdle and Simar
[2007], Kx+ c is distributed as

Kx þ c∼Nm Kx þ c;KSKT
� �

: (10b)

This theorem tells us that if x is distributed according to a multivariate normal statistics, then every linear
function of x should consistently follow a normal distribution as well.
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Next, let x and y both be (n× 1) dimensional vectors, each distributed independently as x∼Nn x; Sxð Þ and

y ∼Nn y; Sy
� �

. From Theorem 2.19 of Basilevsky [1994], (x+ y) should be distributed according to

x þ yð Þ∼Nn x þ y; Sx þ Sy
� �

: (11a)

This theorem tells us that adding two independent Gaussian distribution yields another
Gaussian distribution.

Finally, as an extension of the theorem (11a), let x1, x2,…, xl be independently, identically distributed vectors

according to Nn(x ̅, S). Let ∑
l
i¼1

xi
l be the sample mean vector. Then from Theorem 3.5.2 of Tong [1990], ∑li¼1

xi
l

obeys the following multivariate normal distribution:Xl

i¼1

xi
l
∼ Nn x; S=lð Þ: (11b)

This theorem tells us that multiple sampling would reduce the covariance uncertainty by a factor of the sam-
ple number (i.e., reduce S to be S/l).

Now we utilize the statistical fundamentals above to analyze the properties of the retrieval quality (retrieval
error) bx � xð Þ, as given by equation (8). There are three controlling terms on the right-hand side (RHS) of (8).

The first term bSS�1a xa is a constant vector and hence has a zero covariance, i.e.,

bSS�1a xa ∼Nn
bSS�1a xa ; 0

� �
: (12a)

In contrast, the second term� bSS�1a x and the third term bSKTS�1ε ε are both variable vectors. They are a linear
function of x and ε, respectively. Therefore, we can apply (2), (9), and (10a) to achieve their multivariate nor-
mal distribution:

�bSS�1a x ∼ Nn �bSS�1a xc ; bSS�1a ScS�1a bS� �
; (12b)

bSKTS�1ε ε∼Nn 0; bSKTS�1ε K bS� �
: (12c)

Finally, according to (11a), the linear combination of (12a)–(12c), due to their independence, leads to the fol-
lowing multivariate normal distribution for the retrieval quality (retrieval error):

bx � xð Þ∼Nn
bSS�1a xa � xcð Þ

� �
; bS S�1a ScS�1a þ KTS�1ε K

� �bSÞ: (13)

Here the mean bSS�1a xa � xcð Þ represents the accuracy of the retrieval quality: the statistical bias of the retrie-
val solution bx from the true state x (accuracy is often called bias in the literature). The covariance
bS S�1a ScS�1a þ KTS�1ε K
� �bS represents the precision (statistical variability) of the retrieval quality (see Taylor

[1999] for a rigorous statistical definition of accuracy and precision).

Therefore, we have applied the methodology of Multivariate Statistics to systematically obtain the rigorous
framework (13). Our Appendix A demonstrates the consistency of our equation (13) with previous studies
for a rigorous error analysis of OET, by also applying the statistical methodology. This methodology is a use-
ful tool in performing error analysis for various retrieval scenarios, as further shown in the rest of
this manuscript.

The statistical nature of the retrieval quality using OET is essentially captured by equation (13), whose physical
meaning is not straightforward. Figure 1a schematically illustrates the physical meaning of (13) in a simple
scenario of a two-dimensional state vector (x= [x1, x2]) and a one-dimensional measurement (y). This sche-
matic essentially follows Figure 2.4 of Rodgers [2000] but now adds the effects of xc and Sc. The golden ellipse
represents the variability/distribution of the true state x, which is shown within the range of the covariance Sc
with the mean xc at the center (i.e., x~Nn(xc, Sc), equation (9)). To retrieve x via a Bayesian approach, there
should be two constraints. The first constraint is the a priori knowledge/guess about the true state’s distribu-
tion: x~Nn(xa, Sa) (equation (3)), as represented by the purple ellipse. The second constraint of x comes from
the measurement, as represented by the green region. (That is, given the measurement y and the weighting
function K, the Gaussian uncertainty of the measurement error ε leads to the variability of x shown by the
green region, as directly inversed from the first-order expression for the forward model y=Kx+ ε.) The
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Bayesian statistics combines the above two constraints to yield the optimal solution x̂ with a smaller
uncertainty than either of the two constraints, as represented by the red ellipse. (From (7), (10a), (10b),

and (11a), we can obtain the variability/distribution of bx ~Nn( bSS�1a xa þ bSKTS�1ε Kxc ; bSKTS�1ε K

ScKTS�1ε K þ 1
� �bS), as represented by the red ellipse.) Finally, the blue ellipse represents the uncertainty of

the retrieval quality (bx � x), as characterized by equation (13).

Equation (13) is a rigorous representation for the retrieval quality (again, see the Appendix A). Note, however,
that this representation also has limitations, e.g., not accounting for the non-Gaussian effect. At least partly
due to the reasons discussed below, numerous previous studies have widely applied the following
approximate framework for the error analysis of CO2 retrieval [e.g., O’ Dell et al., 2012; Bovensmann et al.,
2010; Bösch et al., 2006; Boesch et al., 2011; Yoshida et al., 2011; Reuter et al., 2010], implicitly or explicitly, as
detailed right above equation (16) in section 3:

bx � xð Þ∼Nn 0; bS� �
: (14)

The key assumption in (14) is to approximate the true state distribution x~Nn(xc, Sc) by the a priori distribu-
tion x~Nn(xa, Sa): i.e., using xc= xa and Sc= Sa in the rigorous framework, equation (13) yields the approxi-
mate one (14).

The approximation equation (14) is still useful due to the following reasons. The to-be-retrieved true-state
distribution, x~Nn(xc, Sc), is by definition impossible to know precisely in advance of retrievals except in
numerical experiments (see more discussions in the beginning of section 2) [see also Eguchi et al.,
2010]. Thus, equation (13), which includes the unknown parameters xc and Sc, cannot be applied directly.
Again, in theory, the best evaluation for (xc, Sc) before measurements should be the a priori knowledge
(xa, Sa), which is known. Thus, in this sense it is reasonable to approximate (xc, Sc) by (xa, Sa) in the rigor-
ous framework equation (13), which yields the approximation equation (14) that is determinable in real-
world retrievals. However, even though equation (14) is practically useful, this does not change the fact
that it is an approximate framework and it can cause error when evaluating the precision and accuracy
(i.e., equation (13) does not equal equation (14) if (xa, Sa) differs from (xc, Sc), no matter how small this
difference is). Therefore, the follow-up question is whether this error is negligible or nonnegligible for
CO2 retrievals. To answer this question, in many aspects it is actually advantageous to use numerical
simulations rather than real-world remote sensing measurements. This is essentially because, again, the

Figure 1. (a) Schematic for the physical meaning of equation (13), for the scenario of a two-dimensional CO2 state vector and a one-dimensional measurement, as
discussed in sections 2-3. This schematic essentially follows Figure 2.4 of Rodgers [2000], but now adds the effects of xc and Sc. The golden ellipse represents the
variability/distribution of the true state x, which is shown within the range of the covariance Sc with the mean xc at the center [i.e., x ~Nn(xc, Sc)]. The first constraint
for the retrieval is the a priori knowledge x ~Nn(xa, Sa), as represented by the purple ellipse. The second constraint for the retrieval comes from the measurement,
as represented by the green region. The Bayesian statistics combines the above two constraints sophisticatedly to result in the optimal solution x̂ with a smaller
uncertainty than either of the two constraints, as represented by the red ellipse. Finally, the blue ellipse represents the uncertainty of the retrieval quality (bx � x), as
quantified by (13). (b) Same as (a) but for the scenario of a zero-variate true CO2 state x, i.e., a single data point (Sc = 0), as discussed in section 4. The distribution of
(bx � x) here is according to equation (17a).
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true state (xc, Sc) is not known in real-world retrievals but can be prescribed as if it is known in numerical
simulation, as we do in this study. Of course, xc and Sc should be prescribed to be as physical/realistic as
possible, as we attempt to do in section 3. This manuscript aims to explore this issue self-consistently
using the statistical methodology and hopefully shed some light on the question raised above. But it is
never intended to be an exhaustive study on this issue, due to the complicated and extensive variability
of true CO2 profile state in reality [see, e.g., Eguchi et al., 2010; Zeng et al., 2012, 2014]. Our study should
also not be considered as a criticism to the usage of equation (14), which is a practical framework as dis-
cussed above. Again, the reader may also refer to other literature that mentions/discusses the similar issue
but with different focuses [e.g., Kulawik et al., 2006; O’Dell et al., 2012; Worden et al., 2004; Connor et al.,
2008; Reuter et al., 2012; Cressie et al., 2016; Connor et al., 2016].

3. Numerical Illustrations

Here we examine the potential discrepancy between the approximate framework (14) and the more rigorous
framework (13) in the error analysis of CO2 retrieval. Here we use the OCO orbit simulator, whose model con-
figurations are detailed in O’Brien et al. [2009]. For the purpose of this work, we only consider the clear-sky
scenario, whose fraction among the global observations is about 15% under OCO-2 2 km2 spatial resolution
[Miller et al., 2007]. Without loss of generality, the configured atmosphere is composed of 11 layers; the mea-
surement y includes 500 spectrally resolved radiances from 6167.7 to 6220.9 cm�1 spectra (i.e., using the
1.6μm CO2 band, with a OCO-2 resolution ~0.1 cm�1, equally spaced) [see Kuai et al., 2010]. The quantity
of interest, Xco2, can be calculated as hTx, where x is the state vector representing the vertical profile of CO2

(i.e., with 11 layers here) and h is a vector representing the vertical pressure-weighted averaging. From (13)
and the statistical fundamental (10a), we obtain the univariate normal distribution for the Xco2 retrieval qual-
ity (the deviation of the retrieval from the true state):

hT x̂ � hTx
� �

∼N1 hT bSS�1a xa � xcð Þ;hT bS S�1a ScS�1a þ KTS�1ε K
� �bSh� �

: (15)

From fundamental statistics [e.g., Anderson, 2003], the first term and the second term in the RHS of (15),
respectively, represent the accuracy and the variance (the square of precision) of the Xco2 retrieval quality.
In contrast to (15), a widely applied approximate framework for the distribution of the Xco2 retrieval quality,
explicitly or implicitly [e.g., O’ Dell et al., 2012, equation (B3); Bovensmann et al., 2010, equation (B16); Boesch
et al., 2011, equation (5); Bösch et al., 2006, equation (6); Yoshida et al., 2011, equation (12); Reuter et al., 2010,
equation (12)], is represented as follows:

hT x̂ � hTx
� �

∼N1 0; hT Ŝh
� �

: (16)

We note that equation (15) becomes equation (16) only when assuming xc= xa and Sc= Sa, which is the same
simplifying assumption that produces equation (14) from equation (13). This is because (16) and (15) are the
linear transformations of (14) and (13), respectively, by utilizing the statistical fundamental (10a).

The approximate framework (16) yields a perfect accuracy (i.e., zero bias). In contrast, the more rigorous

framework (15) generally yields nonzero accuracy: hT bSS�1a xa � xcð Þ. Here (xa� xc) is the deviation of the a
priori CO2 profile (i.e., xa) from the true profile (i.e., xc), representing the bias of our best knowledge for the
true state before the measurement/retrieval. According to Eguchi et al. [2010], our current best knowledge
of CO2 profile has a bias of about 3.2–7.2 ppm on average [see some recent values in Wunch et al., 2016],
resulting from the complexity of the often-chaotic climate variability that is currently not well
predicted/measured [e.g., Jiang et al., 2010, 2016].

Nowwenumerically examine the potential error introducedwhen evaluating the accuracy of Xco2 retrieval qual-
ity using the approximate framework (16), in contrast to the rigorous framework (15). As discussed at the end of
section 2, the true state (xc, Sc) is actually unknown and is best evaluated by (xa, Sa) before our measurements.
Therefore, by definition in real-world retrievals, we generally cannot determine (xa� xc) accurately (since xc is
unknown), but we can prescribe it in numerical simulations where (xa� xc) represents the uncertainty/bias of
our knowledge for the true state before our retrievals. To be physical andwithout loss of generality, in our experi-
ments we configure some statistically significant structures for the vertical profile of (xa� xc): constant, linear,
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quadratic, and cubic, respectively. The
configurations are detailed in Table 2.
The uncertaintymagnitude of (xa� xc)
is configured to be≲3.2ppm following
Eguchi et al. [2010] [see also Keppel-
Aleks et al., 2011, Table 1]. The Sa in
all four cases are configured as diago-
nal matrices [e.g., Saitoh et al., 2009]
with diagonal elements of 8ppm, a
typical a priori magnitude for many
realistic retrievals of Xco2 (e.g., Kuang
et al. [2002] use 8ppm and Saitoh
et al. [2009] use 10ppm). Note that
Saitoh et al. [2009] obtain improved
retrievals when using prescribed diag-
onal elements for Sa like 10ppm than
when using more constrained values
as determined by CO2 transport
model outputs.

Our results are shown in Figure 2. The accuracy of Xco2 retrieval quality according to the approximate frame-
work (16) is zero in all cases. In contrast, according to the more rigorous framework (15), the true accuracy in
these four cases are ~0.19 ppm, ~0.25 ppm, ~0.28 ppm, and ~0.17 ppm, respectively, at SNR= 400 (i.e., the
SNR magnitude for OCO-2). The large variability here (from 0.17 to 0.28 ppm) suggests a high sensitivity of
the accuracy ofXco2 retrieval to the vertical structure of thedifferencebetween apriori profile and the truepro-
file of CO2 (due to a vertical dependence according to equation (15)). This 0.17–0.28 ppmaccuracy error is non-
negligible, bynoting that the currentGHG-CCI (GreenHouseGas-ClimateChange Initiative) project byESAaims

Table 2. Configurations of Four Numerical Cases That Contrast the
Accuracy of Xco2 Retrieval Quality ( bx � x ) According to the Rigorous
Framework (15) and the Approximate Framework (16), With Results
Discussed in Figure 2 and Section 3a

xa

Case 1 xa(i) = xc(i) + 3.2 ppm
Case 2 xa(i) = xc(i) + 1.6 ppm× [1–2(i� 1)/10]
Case 3 xa(i) = xc(i) + 1.6 ppm× [((i� 1)/10� 3/2)2� 5/4]
Case 4 xa(i) = xc(i) + 1.6 ppm× [((i� 1)/10 + 0.264)3� 1.018]

aBy definition (xa� xc) in real-world retrievals can not be determined
exactly (detailed in section 3). But as numerical experiments we can
prescribe the vertical profile of (xa� xc) to be some statistically/physically
significant structures: constant, linear, quadratic, and cubic, in the four
cases respectively. The uncertainty magnitude of (xa� xc) is configured
to be ≲3.2 ppm according to Eguchi et al. [2010]. The Sa in all four cases
is diagonal matrices with diagonal elements of 8 ppm, which is a typical
a priori magnitude for many realistic retrievals of Xco2 [e.g., Kuang et al.,
2002 use 8 ppm; Saitoh et al., 2009 use 10 ppm]. Here i (i = 1, 2, …, 11) is
the index for the vertical layers in the model.

Figure 2. Four numerical cases that illustrate the accuracy of Xco2 retrieval quality (hT bx � hTx ), vs SNR. The red curve
(always zero) is according to the approximate framework (16). In contrast, the blue curve is according to the more rigorous
framework (15). Here the configurations include an uncertainty vector (xa� xc) according to some statistically significant
vertical structures: constant, linear, quadratic, and cubic, in the four cases respectively. Themagnitude of (xa� xc) and Sa are
configured as detailed in Table 2. This figure shows that the accuracy difference between the two curves is nonnegligible,
~0.17–0.28 ppm at SNR = 400 for these four cases.
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to deliver space-based Xco2 retrieval with an accuracy≲0.2 ppm [Buchwitz et al., 2012]. Note that the numerical
experiments here are essentially a best case scenario and retrievals with real data will likely yield a larger bias.

Next, we examine the potential error introduced when evaluating the precision of Xco2 retrieval quality using
the approximate framework (16), in contrast to the benchmark (15). If the a priori covariance Sa differs from
the true covariance Sc, the approximate precision (variance) term hTŜh, as in (16), would deviate from the rig-

orous precision term hTŜ S�1a ScS�1a þKTS�1ε K
� �

Ŝh as in (15). As discussed before, by definition in real-world

retrievals we cannot determine (Sa� Sc) exactly, although numericallywe can (as in this study). Our numerical
experiments here use some prescribed parameterizations for the difference between Sa and Sc, based on
several studies, with details below. Following Eguchi et al. [2010], the standard deviation (diagonal
elements) of Sa and Sc is configured to be 4 ppm in cases 1–3 of our new experiments (Table 3; 8 ppm
for Sa and 12 ppm for Sc; note that ~10 ppm diagonal elements for Sa yield good retrievals in Saitoh
et al. [2009]). Further, the off-diagonal structure of Sc is related to complicated nonlocal dynamics and is
difficult to characterize well by Sa [Saitoh et al., 2009]: i.e., the structure of Sa can considerably deviate
from Sc. These off-diagonal structures in our cases (Table 3) are parameterized by a zero off-diagonal struc-
ture [Saitoh et al., 2009], the structure of exp(�|i� j|/10) (section 2.6 of Rodgers [2000], here i, j are the
indexes for vertical layers], and the structure of exp(�|i� j|2/10) [according to the principle of Saitoh
[2009] that the correlations between layers should become weaker quickly with increasing distance
between the layers].

As shown in Figures 3a–3c, the precision differences [when using (16) vs (15)] in cases 1–3 are ~1.4–1.7 ppm at
SNR= 400 (the SNRmagnitude for OCO-2). This represents the error introduced by using the approximate fra-
mework (16) in opposition to the rigorous one (15). This 1.4–1.7 ppm precision error is nonnegligible since
the precision goal is ≲1 ppm for the GHG-CCI project regarding the Xco2 retrieval [Buchwitz et al., 2012]. Case
4 in Table 3 and Figure 3d is designed to answer the question of to what degree should the diagonal elements
of Sa and Sc be different in order to compensate their off-diagonal inequality for reaching the same precision
when using (15) vs (16) (i.e., the two curves in Figure 3d are close to each other). To test this, we configure Sa
andScwithunrealistic largedifferences (~20 ppmvs12 ppm, as shown inCase4of Table 3) in their diagonal ele-
ments. This suggests that it is generally difficult tomake the precision difference between (15) and (16) vanish.
Again our test cases here are somewhat idealized since the true state distribution/variability can often be com-
plicated [e.g., Zeng et al., 2012, 2014] and the difference between Sa and Sc is poorly quantified [Eguchi et al.,
2010]. Further, in real-world retrievals the framework equation (16) is still useful due to the uncertainty of the
true state (Sc, xc) in reality. But for numerical simulation (as in this study), equation (15) can act as a valuable
benchmarksince the truestate is thenprescribed.Similarly if highlyaccurate insitumeasurementsareavailable,
equation (15) can act as a useful benchmark for remote sensing retrievals since the true state is then known.

Note that all discussions above are based on single sounding (for a Gaussian-variate true state), which is an
important remote sensing scenario [e.g., Buchwitz et al., 2012; Reuter et al., 2011]. Another important scenario
is multiple soundings: e.g., consider l soundings of CO2 that are nearly independently and identically

Table 3. Configurations of Four Numerical Cases That Contrast the Precision of Xco2 Retrieval Quality (x̂�x) According to
the Rigorous Framework (15) and the Approximate Framework (16), With Results Discussed in Figure 3 and Section 3a

Sa Sc

Case 1 (Sa)i,j = (8 ppm)2 × exp(�|i� j|/10) (Sc)i,j = (12 ppm)2 × exp(�|i� j|2/10)
Case 2 (Sa)i,i = (8 ppm)2 diagonal (Sc)i,j = (12 ppm)2 × exp(�|i� j|/10)
Case 3 (Sa)i,i = (8 ppm)2 diagonal (Sc)i,j = (12 ppm)2 × exp(�|i� j|2/10)
Case 4 (Sa)i,j = (20 ppm)2 × exp(�|i� j|/10) (Sc)i,j = (12 ppm)2 × exp(�|i� j|2/10)

aThe diagonal elements of Sa and Sc can differ by ~3.2–7.2 ppm [Eguchi et al., 2010]. This difference in cases 1–3 is
configured to be 4 ppm [i.e., 8 ppm for Sa and 12 ppm for Sc]. Further, the off-diagonal structure of Sa may
considerably deviate from that of Sc due to the hard-to-predict nonlocal dynamics [Saitoh et al., 2009]. Therefore these
off-diagonal structures here are prescribed based on previous studies: a zero off-diagonal structure [Saitoh et al., 2009;
Kuang et al., 2002], the structure of exp(�|i� j|/10) [section 2.6 of Rodgers, 2000], and the structure of exp(�|i� j|2/10)
[according to the principle of Saitoh et al. [2009] that the correlations between layers should become weaker quickly
with increasing distance between the layers]. Case 4 is designed to answer the question of to what degree should
the diagonal elements of Sa and Sc be different in order to compensating their off-diagonal inequality for reaching
the same precision when using (15) and (16). Here i and j (i, j = 1, 2, …, 11) are the indexes for the vertical layers in
the model.
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distributed (i.e., within the examined spatial and temporal variabilities), with the caveat that Xco2 retrievals in
reality are never entirely independent from each other [Kulawik et al., 2016; Hammerling et al., 2012].
According to the statistical fundamental (11b), the sample mean of multiple sounding (assume l
soundings) of Xco2 retrievals would yield a retrieval quality that is similar to the single-sounding scenario:
it can be quantified rigorously by (15) or approximately by (16), except that the variance term should now
be divided by a factor of l in both frameworks. This is consistent with Figure 4 of Kuang et al. [2002]. (The
variance decreases with the sounding number by a factor of l. Therefore, the precision, which is the square
root of the variance, is improved with the sounding number by a factor of l0.5.) Therefore, all
conclusions/comparisons above in principle can be similarly applied to the multiple-sounding scenario.

4. The Scenario for a Zero-Variate True State

Sections 2–3 above focus on the retrieval where the true CO2 state of interest is one defined under a specified
spatial-temporal scale/range, e.g., define the true state as the CO2 for a 1000 km×1000 km region during
February. Therefore, this true state has a variability. Each single sounding measures a sample of the true state;
sufficient large amounts of samples may reflect the variability of the defined true state. Therefore, the true
state here obeys a certain spatial-temporal variability/distribution that is characterized by a nonzero
covariance Sc shown in (9). This is the widely considered scenario [e.g., Miller et al., 2007]. Another important
scenario, as considered in this section, is that the true CO2 state of interest is one defined for a particular time
and location (i.e., a single state at the time/location of the sounding) [e.g., Wunch et al., 2011; Fu et al., 2014].
Therefore, this kind of true state does not have any spatial-temporal variability, i.e., zero-variate as character-
ized by a zero covariance Sc. This definition-related analysis is helpful for snapshot-measurement event, e.g.,
it is useful to detect local abnormal (non-Gaussian with time/location) sources/sinks of CO2 or other GHG [e.g.,
Kuai et al., 2012; Su et al., 2015; Jiang et al., 2013]. In contrast, the framework in sections 2-3 does not work for
this non-Gaussian situation since it requires a Gaussian statistics for the true state.

Figure 3. Four numerical cases that illustrate the precision of Xco2 retrieval quality (hT x̂�hTx), vs SNR. The red curve is
according to the approximate framework (16). In contrast, the blue curve is according to the more rigorous framework
(15). The diagonal elements of Sa and Sc is configured as 4 ppm in cases 1–3. Their off-diagonal structures here are
parameterized as detailed in Table 3. Case 4 in Table 3 is designed to answer the question of to what degree should the
diagonal elements of Sa and Sc be different in order to compensating their off-diagonal inequality for reaching the same
precision when using (15) and (16). In panels (a)–(c), the precision difference between the two curves is ~1.4–1.7 ppm at
SNR = 400, which is nonnegligible.
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Statistically speaking, the scenario for a zero-variate true state is a special/extreme case of the one discussed
in sections 2-3, by demanding a zero covariance Sc. Therefore, forcing Sc= 0 in (13) yields the distribution of
the retrieval quality for a zero-variate CO2 state vector:

x̂ � xð Þ ∼ Nn ŜS�1a xa � xð Þ; ŜKTS�1ε KŜ
� �

; (17a)

and accordingly for a zero-variate Xco2 scalar (i.e., using (17a) and (10a)):

hT x̂ �hTx
� �

∼ N1 hTŜS�1a xa � xð Þ; hT ŜKTS�1ε KŜh
� �

: (17b)

From statistics [e.g., Anderson, 2003], equation (17b) reveals that the accuracy and the precision (variance)

terms arehT bSS�1a (xa� x) andhT bSKTS�1ε K bSh, respectively, for the retrieval quality of a zero-variate Xco2 true
state. Here x is equivalent to its mean xc since it is zero variate. The physical meaning of (17a) is illustrated
schematically in Figure 1b. The scenario of a zero-variate true state (Figure 1b) has the same retrieval accuracy
as the nonzero-variate scenario (Figure 1a), but yields a better precision that is purely due to the measure-
ment uncertainty (Sε). In contrast, the scenario of Figure 1a includes a nonzero covariance Sc (due to a
nonzero-variate true state) in (13) that adds an extra uncertainty and hence causes a larger retrieval precision.

As a numerical examination, we perform four experiments that compare the retrieval precision of Xco2 in
these two scenarios [i.e., (17b) vs (15)]. The configurations are summarized in Table 4: the covariance Sc
for the nonzero-variate true state [equation (15)) is configured as (Sc)i,j= (12 ppm)2 × exp(�|i� j|/10), where
the off-diagonal structure is according to section 2.6 of Rodgers [2000] and the magnitude (~12 ppm) is
according to Saitoh et al. [2009]. We apply the similar off-diagonal structure for Sa with various magni-
tudes (12 ppm, 8 pm, and 4 ppm) in cases 1–3, respectively (detailed in Table 4). In case 4, Sa has a diag-
onal structure following Kuang et al. [2002].

The results are presented in Figure 4: the scenario of a zero-variate true state (dashed curve) always has a bet-
ter precision (smaller magnitude) than the corresponding scenario of a nonzero-variate true state (solid
curve), i.e., 0.3–1 ppm vs 2.5–3.5 ppm at SNR= 400 (the SNR magnitude for OCO-2; Figure 4 cases 1–4).
These verify our analytical assessment at the beginning of this section. Note that this contrast above does

Figure 4. Four numerical cases that illustrate the precision of Xco2 retrieval quality (h
T x̂�hTx), according to the scenario of

a nonzero-variate true state (equation (15), solid curve), and the scenario of a zero-variate true state (equation (17b), dashed
curve), as a function of SNR. The configurations are detailed in Table 4 and section 4. Clearly the latter scenario (dashed) has
a better precision (smaller magnitude) than the former (solid) under the same configuration, i.e., 0.3–1 ppm vs 2.5–3.5 ppm
at SNR = 400.
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not suggest that the former scenario
(zero-variate true state) is superior to
the latter scenario (nonzero-variate
true state): they are designed for
distinct purposes [i.e., the former aims
to measure a snapshot state or
abnormally distributed variability,
while the latter aims to measure a
regularly/Gaussian-distributed varia-
bility. The former scenario, however,
may have the advantage over the lat-
ter in the sense that it is applicable to
the abnormally distributed true state
and the resulting precision can be
exactly quantified even in real-world
retrievals (since Sc is zero/known in

the former scenario). This above contrast helps to elucidate the statistical feature of the error analysis in these
two important scenarios of Xco2 retrieval (Figure 1a vs 1b).

5. Discussion and Conclusions

In this study, we revisit the methodology of Multivariate Statistics to explore the error analysis for Bayesian-
based Xco2 retrieval from remote sensing.

Our key results are summarized as follows:

1. Rigorous error analysis for OET-based retrieval of CO2 is often difficult to perform due to the subtlety of
Multivariate Statistics. To shed light on this issue, we revisited some fundamentals of Multivariate
Statistics (section 2) that are essential to characterize the mathematical nature of the associated error ana-
lysis (Figure 1). We show that the related statistical methodology is a practical and useful tool in analyzing
the retrieval errors (sections 2–4; the Appendix A).

2. We use the statistical methodology to explore a widely used approximate framework for the error
analysis of Xco2 retrieval [equation (16)], in contrast to a more rigorous framework [equation (15);
the Appendix A]. The approximate framework ideally requires the a priori state equal to the true
state. Due to the nature of the problem considered, realistic numerical simulations may be more
appropriate than remote sensing data for our primary experiments (see the end of section 2). We
constructed several empirical configurations to numerically demonstrate these differences. Our
experiments show that the approximate framework may potentially yield nonnegligible errors for
evaluating the accuracy (Figure 2, up to 0.17–0.28 ppm error at SNR = 400) and the precision
(Figure 3, up to 1.4–1.7 ppm error at SNR= 400) of Xco2 retrieval quality. The errors may become
smaller or larger in extensively various real-world scenarios, but should statistically become smaller
if improving the a priori climatology closer to the true state. This may help to account for the
potential missing part of accuracy (up to 0.1–0.3 ppm) and precision (up to 1–2 ppm) underesti-
mated by previous studies that have applied the approximate framework. Our results, however,
do not alter the fact that the approximate framework is still useful in real-world remote sensing
(see the end of section 2). But the rigorous framework can be a useful benchmark for numerical
simulations and in situ measurements.

3. We use the statistical methodology to explore the intrinsic difference and connection for the error analysis
between two important remote sensing scenarios: the sounding for a nonzero-variate CO2 state and the
sounding for a zero-variate CO2 state (snapshot state). Our statistical analysis [equation (17a) vs (13)] and
our simulated retrieval experiments suggest that the two scenarios essentially yield the same-magnitude
accuracy, while the latter scenario yields a better precision than the former (Figure 4).

4. Our statistical analysis can be applied consistently to the single-sounding scenario or the multiple-
sounding scenario (the end of section 3). These two scenarios are intrinsically connected, as reflected
by applying the fundamental Multivariate Statistics [e.g., using the theorem equation (11b)].

Table 4. Configurations of Four Numerical Cases That Contrast the
Precision of Xco2 Retrieval Quality ( x̂�x ) in the Scenario of a Nonzero-
Variate True State [Equation (15)] and in the Scenario of a Zero-Variate True
State [Equation (17b)], With Results Discussed in Figure 4 and Section 4a

Sa

Case 1 (Sa)i,j = (12 ppm)2 × exp(�|i� j|/10)
Case 2 (Sa)i,j = (8 ppm)2 × exp(�|i� j|/10)
Case 3 (Sa)i,j = (4 ppm)2 × exp(�|i� j|/10)
Case 4 (Sa)i,i = (4 ppm)2 diagonal

aThe covariance Sc for the nonzero-variate true state [equation (15)] is
configured as (Sc)i,j = (12 ppm)2 × exp(�|i� j|/10), where the off-diagonal
structure is according to section 2.6 of Rodgers [2000] and the magnitude
(~12 ppm) is according to Saitoh et al. [2009]. We apply the similar off-
diagonal structure for Sa with various magnitudes (12 ppm to 4 ppm) in
cases 1–3, as detailed in this table. In case 4 of this table, Sa has a diagonal
structure following Kuang et al. [2002]. Here i and j (i, j = 1, 2,…, 11) are the
indexes for the vertical layers in the model.
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Our results should be treated with the following caution. First, this note should not be regarded as an
exhaustive investigation for OET error analysis, which is a deep subject and far beyond the scope of this
note. We focus on the measurement error but do not explicitly include the analysis for the smoothing
error and interference error [e.g., Yoshida et al., 2011], which should in principle be similarly analyzed by
the statistical methodology we discussed here. Second, this note performs the analysis based on the
first-order distribution of the optimal solution [equation (5)]. Higher-order nonlinear effects may add an
extra nonnegligible uncertainty to the error analysis. Third, the real-world CO2 state may not necessarily
follow Gaussian statistics, which is a known difficulty for error analysis [e.g., Kulawik et al., 2006] and can
cause complication for our analysis in sections 2-3. Fourth, this note focuses on clear-sky scenarios [Miller
et al., 2007]. For non-clear-sky conditions, aerosols and clouds can induce extra uncertainties to the
accuracy/precision analysis of retrievals [e.g., Bril et al., 2007, 2009; Jiang et al., 2015]. Fifth, our numerical
analysis is carried out in certain parameter spaces [Kuai et al., 2010]. Other parameter space is worthy the
exploration as well.

Our numerical configurations in section 3, although attempted to be as physical as possible, unavoid-
ably still include idealized components due to the difficulty of parameterizing the true state distribution.
As an alternative, in situ measurement like TCCON [Wunch et al., 2011] in different regions can closely
provide some local true-state distribution (xc and Sc). Using this true state data (xc and Sc), rigorous
error analysis can be performed according to equation (13) and compare with the results using the
approximate framework equation (14). This work can be combined with the studies of Kulawik et al.
[2016]; Wunch et al. [2016], and Lindqvist et al. [2015] who recently quantify the quality of satellite
GHG retrievals by comparing to TCCON measurements. This observation, if combining with OCO-2 or
GOSAT CO2 retrievals, can be useful to further our exploration on the issue discussed in section 3
(approximate vs rigorous framework). This requires large amounts of work but is our next step. As
another future project, we should also test the CO2 profile retrieval [e.g., Kuai et al., 2012] in contrast
to the Xco2 retrieval discussed in this study: Using the approximate framework may potentially cause
a larger error for the error analysis in profile retrieval than that in Xco2 retrieval, due to the vertical
profile variability.

Our revisiting of methodology, based on the strict Multivariate Statistics, is for a more realistic/correct ana-
lysis for the contribution of the measurement uncertainty to the retrieval error of CO2 remote sensing. Our
analysis is based on an essential, but often forgotten, fact that a priori climatology in reality is never equal
to the true state [Bowman et al., 2002]. This methodology is also applicable to the analysis of other types
of error such as the forward model errors [since ε and Sε in sections 1-2 can include other types of error;
see Bowman et al., 2006; Yoshida et al., 2011]. Other types of uncertainties will certainly add to our exam-
ined retrieval error [Bösch et al., 2006; Li et al., 2016]. This will be the focus of a future study that will make
our current error analysis more complete.

Appendix A: Consistency of Our Equation (13) With Previous Rigorous Studies

As an example from the literature, Bowman et al. [2002] perform a rigorous error analysis for the remote sen-
sing retrieval of ozone. They give the covariance of the retrieval quality in their equation (16). Here we show

that their equation (16) is consistent with our derived retrieval quality covariance Ŝ S�1a ScS�1a þ KTS�1ε K
� �

Ŝ

given in our equation (13) [and hence our equation (15)].

Note that Bowman et al. [2002] use different notations from those of Rodgers [2000] and Rodgers and Connor
[2003], while our manuscript follows the notations of the latter throughout. In Bowman et al. [2002], Axx in
their equation (16) is the averaging kernel given in their equation (8), which can also be expressed by

Axx ¼ GK ¼ KTS�1ε K þ S�1a
� ��1

KTS�1ε K ¼ ŜKTS�1ε K ; (A1)

according to equations (2.58), (2.45) and (2.27) of Rodgers [2000]. Here Ŝ is given by our equation (6). It is
straightforward to show

I� Axx ¼ I� ŜKTS�1ε K ¼ Ŝ Ŝ�1 � KTS�1ε K
� � ¼ ŜS�1a : (A2)
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Further, Sx in equation (16) of Bowman et al. [2002] is the covariance of the true state vector x given in their
equation (12), which is denoted as Sc in our manuscript. Therefore, according to (A2), (I�Axx)Sx(I�Axx)

T in
equation (16) of Bowman et al. [2002] can be expressed by

I� Axxð ÞSx I� Axxð ÞT ¼ ŜS�1a Sc ŜS�1a
� �T ¼ Ŝ S�1a ScS�1a Ŝ: (A3)

There is a factor MGz in their equation (16). Contrasting their equation (8) with our (A1) above, MGz can be
expressed by

MGz ¼ ŜKTS�1ε : (A4)

Next, Sn in their equation (16) is the error covariance [see their equation (1) and the definition of Sn there),

which is denoted as Sε in our manuscript. Therefore, from (A4), MGzSn GT
z MT in their equation (16) can

be expressed as follows:

MGzSnGT
zM

T ¼ ŜKTS�1ε Sε ŜKTS�1ε
� �T ¼ ŜKTS�1ε Sε S�1ε KŜ ¼ ŜKTS�1ε KŜ (A5)

Finally, we combine equations (A3) and (A5) and hence obtain the alternative expression for equation (16) of
Bowman et al. [2002]:

I–Axxð ÞSx I–Axxð ÞT þMGzSnGT
zM

T ¼ ŜS�1
a ScS�1

a Ŝ þ ŜKTS�1
ε KŜ

¼ Ŝ S�1
a ScS�1

a þ KTS�1
ε K

� �
Ŝ

(A6)

This is exactly the same as the covariance of the retrieval quality given in our equation (13). Therefore, our
equation (13) is consistent with Bowman et al. [2002] regarding the rigorous framework of error analysis.
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