1,436 research outputs found

    Diffusion-based method for producing density equalizing maps

    Full text link
    Map makers have long searched for a way to construct cartograms -- maps in which the sizes of geographic regions such as countries or provinces appear in proportion to their population or some other analogous property. Such maps are invaluable for the representation of census results, election returns, disease incidence, and many other kinds of human data. Unfortunately, in order to scale regions and still have them fit together, one is normally forced to distort the regions' shapes, potentially resulting in maps that are difficult to read. Many methods for making cartograms have been proposed, some of them extremely complex, but all suffer either from this lack of readability or from other pathologies, like overlapping regions or strong dependence on the choice of coordinate axes. Here we present a new technique based on ideas borrowed from elementary physics that suffers none of these drawbacks. Our method is conceptually simple and produces useful, elegant, and easily readable maps. We illustrate the method with applications to the results of the 2000 US presidential election, lung cancer cases in the State of New York, and the geographical distribution of stories appearing in the news.Comment: 12 pages, 3 figure

    Performance of A1C for the Classification and Prediction of Diabetes

    Get PDF
    OBJECTIVE Although A1C is now recommended to diagnose diabetes, its test performance for diagnosis and prognosis is uncertain. Our objective was to assess the test performance of A1C against single and repeat glucose measurements for diagnosis of prevalent diabetes and for prediction of incident diabetes. RESEARCH DESIGN AND METHODS We conducted population-based analyses of 12,485 participants in the Atherosclerosis Risk in Communities (ARIC) study and a subpopulation of 691 participants in the Third National Health and Nutrition Examination Survey (NHANES III) with repeat test results. RESULTS Against a single fasting glucose ≥126 mg/dl, the sensitivity and specificity of A1C ≥6.5% for detection of prevalent diabetes were 47 and 98%, respectively (area under the curve 0.892). Against repeated fasting glucose (3 years apart) ≥126 mg/dl, sensitivity improved to 67% and specificity remained high (97%) (AUC 0.936). Similar results were obtained in NHANES III against repeated fasting glucose 2 weeks apart. The accuracy of A1C was consistent across age, BMI, and race groups. For individuals with fasting glucose ≥126 mg/dl and A1C ≥6.5% at baseline, the 10-year risk of diagnosed diabetes was 88% compared with 55% among those individuals with fasting glucose ≥126 mg/dl and A1C 5.7–<6.5%. CONCLUSIONS A1C performs well as a diagnostic tool when diabetes definitions that most closely resemble those used in clinical practice are used as the “gold standard.” The high risk of diabetes among individuals with both elevated fasting glucose and A1C suggests a dual role for fasting glucose and A1C for prediction of diabetes. Although A1C is now recommended for the diagnosis of diabetes (1,2), its precise test performance is uncertain. The lack of a single, clear “gold standard” poses a challenge for determining the performance of A1C. Previous diagnostic studies of A1C have relied exclusively on a single elevated fasting or 2-h glucose values as gold standards (3–5). However, because glucose determinations are inherently more variable than A1C (6), these convenient gold standards are likely to reduce the apparent accuracy of A1C as a diagnostic test. A stronger gold standard would rely on repeated glucose determinations on different days (2), i.e., the recommended approach to diagnosis of diabetes in clinical practice. Alternatively, A1C and fasting glucose can be compared head-to-head against the subsequent development of clinically diagnosed diabetes as the gold standard. We hypothesized that 1) A1C would perform well as a diagnostic and prognostic test for diabetes across its full range and at the American Diabetes Association–recommended threshold of 6.5% and 2) that its performance would be best when judged against stronger, most clinically relevant gold standards

    Engaging Citizens with Televised Election Debates through Online Interactive Replays

    Get PDF
    In this paper we tackle the crisis of political trust and public engagement with politics by investigating new methods and tools to watch and take part in televised political debates. The paper presents relevant research at the intersection of citizenship, technologies and government/democracy, and describes the motivation, requirements and design of Democratic Replay, an online interactive video replay platform that offers a persistent, customisable digital space for: (a) members of the public to express their views as they watch online videos of political events; and (b) enabling for a richer collective understanding of what goes on in these complex media events

    The role of microtubule movement in bidirectional organelle transport

    Get PDF
    We study the role of microtubule movement in bidirectional organelle transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells serve as sensitive probes of motor induced, noisy cytoskeletal motions. Multiple peroxisomes move in unison over large time windows and show correlations with microtubule tip positions, indicating rapid microtubule fluctuations in the longitudinal direction. We report the first high-resolution measurement of longitudinal microtubule fluctuations performed by tracing such pairs of co-moving peroxisomes. The resulting picture shows that motor-dependent longitudinal microtubule oscillations contribute significantly to cargo movement along microtubules. Thus, contrary to the conventional view, organelle transport cannot be described solely in terms of cargo movement along stationary microtubule tracks, but instead includes a strong contribution from the movement of the tracks.Comment: 24 pages, 5 figure

    Proton Magnetic Resonance Spectroscopic Evidence of Glial Effects of Cumulative Lead Exposure in the Adult Human Hippocampus

    Get PDF
    BACKGROUND: Exposure to lead is known to have adverse effects on cognition in several different populations. Little is known about the underlying structural and functional correlates of such exposure in humans. OBJECTIVES: We assessed the association between cumulative exposure to lead and levels of different brain metabolite ratios in vivo using magnetic resonance spectroscopy (MRS). METHODS: We performed MRS on 15 men selected from the lowest quintile of patella bone lead within the Department of Veterans Affairs’ Normative Aging Study (NAS) and 16 from the highest to assess in the hippocampal levels of the metabolites N-acetylaspartate, myoinositol, and choline, each expressed as a ratio with creatine. Bone lead concentrations—indicators of cumulative lead exposure—were previously measured using K-X-ray fluorescence spectroscopy. MRS was performed on the men from 2002 to 2004. RESULTS: A 20-μg/g bone and 15-μg/g bone higher patella and tibia bone lead concentration—the respective interquartile ranges within the whole NAS—were associated with a 0.04 [95% confidence interval (CI), 0.00–0.08; p = 0.04] and 0.04 (95% CI, 0.00–0.08; p = 0.07) higher myoinositol-to-creatine ratio in the hippocampus. After accounting for patella bone lead declines over time, analyses adjusted for age showed that the effect of a 20-μg/g bone higher patella bone lead level doubled (0.09; 95% CI, 0.01–0.17; p = 0.03). CONCLUSIONS: Cumulative lead exposure is associated with an increase in the myinositol-to-creatine ratio. These data suggest that, as assessed with MRS, glial effects may be more sensitive than neuronal effects as an indicator of cumulative exposure to lead in adults

    Quantitative Imaging of Protein-Protein Interactions by Multiphoton Fluorescence Lifetime Imaging Microscopy using a Streak camera

    Full text link
    Fluorescence Lifetime Imaging Microscopy (FLIM) using multiphoton excitation techniques is now finding an important place in quantitative imaging of protein-protein interactions and intracellular physiology. We review here the recent developments in multiphoton FLIM methods and also present a description of a novel multiphoton FLIM system using a streak camera that was developed in our laboratory. We provide an example of a typical application of the system in which we measure the fluorescence resonance energy transfer between a donor/acceptor pair of fluorescent proteins within a cellular specimen.Comment: Overview of FLIM techniques, StreakFLIM instrument, FRET application
    corecore