377 research outputs found

    A Search for Environmental Effects on Type Ia Supernovae

    Get PDF
    We use integrated colors and B and V absolute magnitudes of Type Ia supernova (SN) host galaxies in order to search for environmental effects on the SN optical properties. With the new sample of 44 SNe we confirm the conclusion by Hamuy et al. (1996a) that bright events occur preferentially in young stellar environments. We find also that the brightest SNe occur in the least luminous galaxies, a possible indication that metal-poorer neighbourhoods produce the more luminous events. The interpretation of these results is made difficult, however, due to the fact that galaxies with younger stellar populations are also lower in luminosity. In an attempt to remove this ambiguity we use models for the line strengths in the absorption spectrum of five early-type galaxies, in order to estimate metallicities and ages of the SN host galaxies. With the addition of abundance estimates from nebular analysis of the emission spectra of three spiral galaxies, we find possible further evidence that luminous SNe are produced in metal-poor neighborhoods. Further spectroscopic observations of the SN host galaxies will be necessary to test these results and assist in disentangling the age/metallicity effects on Type Ia SNe.Comment: 14 pages, 5 figures, to appear in the September 2000 issue of The Astronomical Journa

    PMN J1632-0033: A new gravitationally lensed quasar

    Full text link
    We report the discovery of a gravitationally lensed quasar resulting from our survey for lenses in the southern sky. Radio images of PMN J1632-0033 with the VLA and ATCA exhibit two compact, flat-spectrum components with separation 1.47" and flux density ratio 13.2. Images with the HST reveal the optical counterparts to the radio components and also the lens galaxy. An optical spectrum of the bright component, obtained with the first Magellan telescope, reveals quasar emission lines at redshift 3.42. Deeper radio images with MERLIN and the VLBA reveal a faint third radio component located near the center of the lens galaxy, which is either a third image of the background quasar or faint emission from the lens galaxy.Comment: 21 pp., including 4 figures; thoroughly revised in light of new MERLIN/HST data; accepted for publication in A

    The Distance to SN 1999em from the Expanding Photosphere Method

    Get PDF
    We present optical and IR spectroscopy of the first two months of evolution of the Type II SN 1999em. We combine these data with high-quality optical/IR photometry beginning only three days after shock breakout, in order to study the performance of the ``Expanding Photosphere Method'' (EPM) in the determination of distances. With this purpose we develop a technique to measure accurate photospheric velocities by cross-correlating observed and model spectra. The application of this technique to SN 1999em shows that we can reach an average uncertainty of 11% in velocity from an individual spectrum. Our analysis shows that EPM is quite robust to the effects of dust. In particular, the distances derived from the VI filters change by only 7% when the adopted visual extinction in the host galaxy is varied by 0.45 mag. The superb time sampling of the BVIZJHK light-curves of SN 1999em permits us to study the internal consistency of EPM and test the dilution factors computed from atmosphere models for Type II plateau supernovae. We find that, in the first week since explosion, the EPM distances are up to 50% lower than the average, possibly due the presence of circumstellar material. Over the following 65 days, on the other hand, our tests lend strong credence to the atmosphere models, and confirm previous claims that EPM can produce consistent distances without having to craft specific models to each supernova. This is particularly true for the VI filters which yield distances with an internal consistency of 4%. From the whole set of BVIZJHK photometry, we obtain an average distance of 7.5+/-0.5 Mpc, where the quoted uncertainty (7%) is a conservative estimate of the internal precision of the method obtained from the analysis of the first 70 days of the supernova evolution.Comment: 68 pages, 15 tables, 22 figures, to appear in Ap

    Long slit spectroscopy of a sample of isolated spirals with and without an AGN

    Full text link
    We present the kinematical data obtained for a sample of active (Seyfert) and non active isolated spiral galaxies, based on long slit spectra along several position angles in the Halpha line region and, in some cases, in the Ca triplet region as well. Gas velocity distributions are presented, together with a simple circular rotation model that allows to determine the kinematical major axes. Stellar velocity distributions are also shown. The main result is that active and control galaxies seem to be equivalent in all kinematical aspects. For both subsamples, the departure from pure circular rotation in some galaxies can be explained by the presence of a bar and/or of a spiral arm. They also present the same kind of peculiarities, in particular, S-shape structures are quite common near the nuclear regions. They define very similar Tully-Fisher relations. Emission line ratios are given for all the detected HII regions; the analysis of the [NII]/Halpha metallicity indicator shows that active and non-active galaxies have indistinguishable disk metallicities. These results argue in favour of active and non-active isolated spiral galaxies having essentially the same properties, in agreement with our previous results based on the analysis of near infrared images. It appears now necessary to confirm these results on a larger sample.Comment: 35 pages, 54 figures, Accepted for publication in Astronomy & Astrophysics The full paper with its figures is available on the anonymous account of ftp.iap.fr in /home/ftp/pub/from_users/durret/marquez.ps.gz (999 kb

    HST Colour-Magnitude Diagrams of Six Old Globular Clusters in the LMC

    Get PDF
    We report on HST observations of six candidate old globular clusters in the Large Magellanic Cloud: NGC 1754, NGC 1835, NGC 1898, NGC 1916, NGC 2005 and NGC 2019. Deep exposures with the F555W and F814W filters provide us with colour-magnitude diagrams that reach to an apparent magnitude in V of ~25, well below the main sequence turnoff. These particular clusters are involved with significantly high LMC field star densities and care was taken to subtract the field stars from the cluster colour-magnitude diagrams accurately. In two cases there is significant variable reddening across at least part of the image, but only for NGC 1916 does the differential reddening preclude accurate measurements of the CMD characteristics. The morphologies of the colour- magnitude diagrams match well those of Galactic globular clusters of similar metallicity. All six have well-developed horizontal branches, while four clearly have stars on both sides of the RR Lyrae gap. The abundances obtained from measurements of the height of the red giant branch above the level of the horizontal branch are 0.3 dex higher, on average, than previously measured spectroscopic abundances. Detailed comparisons with Galactic globular cluster fiducials show that all six clusters are old objects, very similar in age to classical Galactic globulars such as M5, with little age spread among the clusters. This result is consistent with ages derived by measuring the magnitude difference between the horizontal branch and main sequence turnoff. We also find a similar chronology by comparing the horizontal branch morphologies and abundances with the horizontal branch evolutionary tracks of Lee, Demarque, & Zinn (1994). Our results imply that the LMC formed at the same time as the Milky Way Galaxy.Comment: 23 pages, 18 PostScript figures, LaTeX, accepted by MNRAS. Uses mn.sty and epsf.sty. Requires ols.sty (included

    The Deep Lens Survey Transient Search I : Short Timescale and Astrometric Variability

    Full text link
    We report on the methodology and first results from the Deep Lens Survey transient search. We utilize image subtraction on survey data to yield all sources of optical variability down to 24th magnitude. Images are analyzed immediately after acquisition, at the telescope and in near-real time, to allow for followup in the case of time-critical events. All classes of transients are posted to the web upon detection. Our observing strategy allows sensitivity to variability over several decades in timescale. The DLS is the first survey to classify and report all types of photometric and astrometric variability detected, including solar system objects, variable stars, supernovae, and short timescale phenomena. Three unusual optical transient events were detected, flaring on thousand-second timescales. All three events were seen in the B passband, suggesting blue color indices for the phenomena. One event (OT 20020115) is determined to be from a flaring Galactic dwarf star of spectral type dM4. From the remaining two events, we find an overall rate of \eta = 1.4 events deg-2 day-1 on thousand-second timescales, with a 95% confidence limit of \eta < 4.3. One of these events (OT 20010326) originated from a compact precursor in the field of galaxy cluster Abell 1836, and its nature is uncertain. For the second (OT 20030305) we find strong evidence for an extended extragalactic host. A dearth of such events in the R passband yields an upper 95% confidence limit on short timescale astronomical variability between 19.5 < R < 23.4 of \eta_R < 5.2. We report also on our ensemble of astrometrically variable objects, as well as an example of photometric variability with an undetected precursor.Comment: 24 pages, 12 figures, 3 tables. Accepted for publication in ApJ. Variability data available at http://dls.bell-labs.com/transients.htm

    Supernova Limits on the Cosmic Equation of State

    Get PDF
    We use Type Ia supernovae studied by the High-Z Supernova Search Team to constrain the properties of an energy component which may have contributed to accelerating the cosmic expansion. We find that for a flat geometry the equation of state parameter for the unknown component, alpha_x=P_x/rho_x, must be less than -0.55 (95% confidence) for any value of Omega_m and is further limited to alpha_x<-0.60 (95%) if Omega_m is assumed to be greater than 0.1 . These values are inconsistent with the unknown component being topological defects such as domain walls, strings, or textures. The supernova data are consistent with a cosmological constant (alpha_x=-1) or a scalar field which has had, on average, an equation of state parameter similar to the cosmological constant value of -1 over the redshift range of z=1 to the present. Supernova and cosmic microwave background observations give complementary constraints on the densities of matter and the unknown component. If only matter and vacuum energy are considered, then the current combined data sets provide direct evidence for a spatially flat Universe with Omega_tot=Omega_m+Omega_Lambda = 0.94 +/- 0.26 (1-sigma).Comment: Accepted for publication in ApJ, 3 figure
    • …
    corecore