212 research outputs found
Chiral Modulations in Curved Space I: Formalism
The goal of this paper is to present a formalism that allows to handle
four-fermion effective theories at finite temperature and density in curved
space. The formalism is based on the use of the effective action and zeta
function regularization, supports the inclusion of inhomogeneous and
anisotropic phases. One of the key points of the method is the use of a
non-perturbative ansatz for the heat-kernel that returns the effective action
in partially resummed form, providing a way to go beyond the approximations
based on the Ginzburg-Landau expansion for the partition function. The
effective action for the case of ultra-static Riemannian spacetimes with
compact spatial section is discussed in general and a series representation,
valid when the chemical potential satisfies a certain constraint, is derived.
To see the formalism at work, we consider the case of static Einstein spaces at
zero chemical potential. Although in this case we expect inhomogeneous phases
to occur only as meta-stable states, the problem is complex enough and allows
to illustrate how to implement numerical studies of inhomogeneous phases in
curved space. Finally, we extend the formalism to include arbitrary chemical
potentials and obtain the analytical continuation of the effective action in
curved space.Comment: 22 pages, 3 figures; version to appear in JHE
From Euler's play with infinite series to the anomalous magnetic moment
During a first St. Petersburg period Leonhard Euler, in his early twenties,
became interested in the Basel problem: summing the series of inverse squares
(posed by Pietro Mengoli in mid 17th century). In the words of Andre Weil
(1989) "as with most questions that ever attracted his attention, he never
abandoned it". Euler introduced on the way the alternating "phi-series", the
better converging companion of the zeta function, the first example of a
polylogarithm at a root of unity. He realized - empirically! - that odd zeta
values appear to be new (transcendental?) numbers. It is amazing to see how, a
quarter of a millennium later, the numbers Euler played with, "however
repugnant" this game might have seemed to his contemporary lovers of the
"higher kind of calculus", reappeared in the analytic calculation of the
anomalous magnetic moment of the electron, the most precisely calculated and
measured physical quantity. Mathematicians, inspired by ideas of Grothendieck,
are reviving the dream of Galois of uncovering a group structure in the ring of
periods (that includes the multiple zeta values) - applied to the study of
Feynman amplitudes.Comment: v.2: minor corrections, references adde
On the mean-field spherical model
Exact solutions are obtained for the mean-field spherical model, with or
without an external magnetic field, for any finite or infinite number N of
degrees of freedom, both in the microcanonical and in the canonical ensemble.
The canonical result allows for an exact discussion of the loci of the Fisher
zeros of the canonical partition function. The microcanonical entropy is found
to be nonanalytic for arbitrary finite N. The mean-field spherical model of
finite size N is shown to be equivalent to a mixed isovector/isotensor
sigma-model on a lattice of two sites. Partial equivalence of statistical
ensembles is observed for the mean-field spherical model in the thermodynamic
limit. A discussion of the topology of certain state space submanifolds yields
insights into the relation of these topological quantities to the thermodynamic
behavior of the system in the presence of ensemble nonequivalence.Comment: 21 pages, 5 figure
Generating Functions for Coherent Intertwiners
We study generating functions for the scalar products of SU(2) coherent
intertwiners, which can be interpreted as coherent spin network evaluations on
a 2-vertex graph. We show that these generating functions are exactly summable
for different choices of combinatorial weights. Moreover, we identify one
choice of weight distinguished thanks to its geometric interpretation. As an
example of dynamics, we consider the simple case of SU(2) flatness and describe
the corresponding Hamiltonian constraint whose quantization on coherent
intertwiners leads to partial differential equations that we solve.
Furthermore, we generalize explicitly these Wheeler-DeWitt equations for SU(2)
flatness on coherent spin networks for arbitrary graphs.Comment: 31 page
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
Fate of the H-NS–Repressed bgl Operon in Evolution of Escherichia coli
In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS–repressed locus is the bgl (aryl-β,D-glucoside) operon of E. coli. This locus is “cryptic,” as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli
Chiral Modulations in Curved Space II: Conifold Geometries
In this paper, we extend our previous analysis concerning the formation of
inhomogeneous condensates in strongly-coupled fermion effective field theories
on curved spaces and include the case of conifold geometries that represent the
simplest tractable case of manifolds with curvature singularities. In the
set-up considered here, by keeping the genuine thermodynamical temperature
constant, we may single out the role that curvature effects play on the
breaking/restoration of chiral symmetry and on the appearance of inhomogeneous
phases. The first goal of this paper is to construct a general expression of
the finite temperature effective action for inhomogeneous condensates in the
case of four-fermion effective field theories on conifold geometries with
generic Riemannian smooth base (generalised cones). The other goal is to
implement numerically the above formal results and construct self-consistent
solutions for the condensate. We explicitly show that the condensate assumes a
kink-like profile, vanishing at the singularity that is surrounded by a bubble
of restored chiral symmetry phase.Comment: 14 pages; 4 figure
FDA Critical Path Initiatives: Opportunities for Generic Drug Development
FDA’s critical path initiative documents have focused on the challenges involved in the development of new drugs. Some of the focus areas identified apply equally to the production of generic drugs. However, there are scientific challenges unique to the development of generic drugs as well. In May 2007, FDA released a document “Critical Path Opportunities for Generic Drugs” that identified some of the specific challenges in the development of generic drugs. The key steps in generic product development are usually characterization of the reference product, design of a pharmaceutically equivalent and bioequivalent product, design of a consistent manufacturing process and conduct of the pivotal bioequivalence study. There are several areas of opportunity where scientific progress could accelerate the development and approval of generic products and expand the range of products for which generic versions are available, while maintaining high standards for quality, safety, and efficacy. These areas include the use of quality by design to develop bioequivalent products, more efficient bioequivalence methods for systemically acting drugs (expansion of BCS waivers, highly variable drugs), and development of new bioequivalence methods for locally acting drugs
Otitis Media in a New Mouse Model for CHARGE Syndrome with a Deletion in the Chd7 Gene
Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome
Cloning and characterization of a novel alternatively spliced transcript of the human CHD7 putative helicase
<p>Abstract</p> <p>Background</p> <p>The <it>CHD7 </it>(Chromodomain Helicase DNA binding protein 7) gene encodes a member of the chromodomain family of ATP-dependent chromatin remodeling enzymes. Mutations in the <it>CHD7 </it>gene are found in individuals with CHARGE, a syndrome characterized by multiple birth malformations in several tissues. CHD7 was identified as a binding partner of PBAF complex (Polybromo and BRG Associated Factor containing complex) playing a central role in the transcriptional reprogramming process associated to the formation of multipotent migratory neural crest, a transient cell population associated with the genesis of various tissues. <it>CHD7 </it>is a large gene containing 38 annotated exons and spanning 200 kb of genomic sequence. Although genes containing such number of exons are expected to have several alternative transcripts, there are very few evidences of alternative transcripts associated to <it>CHD7 </it>to date indicating that alternative splicing associated to this gene is poorly characterized.</p> <p>Findings</p> <p>Here, we report the cloning and characterization by experimental and computational studies of a novel alternative transcript of the human <it>CHD7 </it>(named CHD7 CRA_e), which lacks most of its coding exons. We confirmed by overexpression of CHD7 CRA_e alternative transcript that it is translated into a protein isoform lacking most of the domains displayed by the canonical isoform. Expression of the CHD7 CRA_e transcript was detected in normal liver, in addition to the DU145 human prostate carcinoma cell line from which it was originally isolated.</p> <p>Conclusions</p> <p>Our findings indicate that the splicing event associated to the CHD7 CRA_e alternative transcript is functional. The characterization of the CHD7 CRA_e novel isoform presented here not only sets the basis for more detailed functional studies of this isoform, but, also, contributes to the alternative splicing annotation of the <it>CHD7 </it>gene and the design of future functional studies aimed at the elucidation of the molecular functions of its gene products.</p
- …