41 research outputs found

    Fate specification and tissue-specific cell cycle control of the <i>Caenorhabditis elegans</i> intestine

    Get PDF
    Coordination between cell fate specification and cell cycle control in multicellular organisms is essential to regulate cell numbers in tissues and organs during development, and its failure may lead to oncogenesis. In mammalian cells, as part of a general cell cycle checkpoint mechanism, the F-box protein β-transducin repeat-containing protein (β-TrCP) and the Skp1/Cul1/F-box complex control the periodic cell cycle fluctuations in abundance of the CDC25A and B phosphatases. Here, we find that the Caenorhabditis elegans β-TrCP orthologue LIN-23 regulates a progressive decline of CDC-25.1 abundance over several embryonic cell cycles and specifies cell number of one tissue, the embryonic intestine. The negative regulation of CDC-25.1 abundance by LIN-23 may be developmentally controlled because CDC-25.1 accumulates over time within the developing germline, where LIN-23 is also present. Concurrent with the destabilization of CDC-25.1, LIN-23 displays a spatially dynamic behavior in the embryo, periodically entering a nuclear compartment where CDC-25.1 is abundant

    Acute Drug Treatment in the Early C. elegans Embryo

    Get PDF
    Genetic and genome-wide RNAi approaches available in C. elegans, combined with tools for visualizing subcellular events with high-resolution, have led to increasing adoption of the early C. elegans embryo as a model for mechanistic and functional genomic analysis of cellular processes. However, a limitation of this system has been the impermeability of the embryo eggshell, which has prevented the routine use of small molecule inhibitors. Here, we present a method to permeabilize and immobilize embryos for acute inhibitor treatment in conjunction with live imaging. To identify a means to permeabilize the eggshell, we used a dye uptake assay to screen a set of 310 candidate genes defined by a combination of bioinformatic criteria. This screen identified 20 genes whose inhibition resulted in >75% eggshell permeability, and 3 that permeabilized embryos with minimal deleterious effects on embryo production and early embryonic development. To mount permeabilized embryos for acute drug addition in conjunction with live imaging, we combined optimized inhibition of one of these genes with the use of a microfabricated chamber that we designed. We demonstrate that these two developments enable the temporally controlled introduction of inhibitors for mechanistic studies. This method should also open new avenues of investigation by allowing profiling and specificity-testing of inhibitors through comparison with genome-wide phenotypic datasets

    The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa

    Get PDF
    Background The digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit remarkable deviations in how their intestines develop. Their morphological and developmental idiosyncrasies have hindered reconstructions of ancestral gut characters for the Ecdysozoa, and limit comparisons with vertebrate models. In this respect, the phylogenetic position, and slow evolving morphological and molecular characters of marine priapulid worms advance them as a key group to decipher evolutionary events that occurred in the lineages leading to C. elegans and D. melanogaster. Results In the priapulid Priapulus caudatus, the gut consists of an ectodermal foregut and anus, and a mid region of at least partial endodermal origin. The inner gut develops into a 16-cell primordium devoid of visceral musculature, arranged in three mid tetrads and two posterior duplets. The mouth invaginates ventrally and shifts to a terminal anterior position as the ventral anterior ectoderm differentially proliferates. Contraction of the musculature occurs as the head region retracts into the trunk and resolves the definitive larval body plan. Despite obvious developmental differences with C. elegans and D. melanogaster, the expression in P. caudatus of the gut-related candidate genes NK2.1, foxQ2, FGF8/17/18, GATA456, HNF4, wnt1, and evx demonstrate three distinct evolutionarily conserved molecular profiles that correlate with morphologically identified sub-regions of the gut. Conclusions The comparative analysis of priapulid development suggests that a midgut formed by a single endodermal population of vegetal cells, a ventral mouth, and the blastoporal origin of the anus are ancestral features in the Ecdysozoa. Our molecular data on P. caudatus reveal a conserved ecdysozoan gut-patterning program and demonstrates that extreme morphological divergence has not been accompanied by major molecular innovations in transcriptional regulators during digestive system evolution in the Ecdysozoa. Our data help us understand the origins of the ecdysozoan body plan, including those of C. elegans and D. melanogaster, and this is critical for comparisons between these two prominent model systems and their vertebrate counterparts

    Reproduction and development in Nematodes

    No full text
    corecore