169 research outputs found
A 22-Week-Old Fetus with Nager Syndrome and Congenital Diaphragmatic Hernia due to a Novel SF3B4 Mutation.
Nager syndrome, or acrofacial dysostosis type 1 (AFD1), is a rare multiple malformation syndrome characterized by hypoplasia of first and second branchial arches derivatives and appendicular anomalies with variable involvement of the radial/axial ray. In 2012, AFD1 has been associated with dominant mutations in SF3B4. We report a 22-week-old fetus with AFD1 associated with diaphragmatic hernia due to a previously unreported SF3B4 mutation (c.35-2A>G). Defective diaphragmatic development is a rare manifestation in AFD1 as it is described in only 2 previous cases, with molecular confirmation in 1 of them. Our molecular finding adds a novel pathogenic splicing variant to the SF3B4 mutational spectrum and contributes to defining its prenatal/fetal phenotype
The role of antioxidants in the interplay between oxidative stress and senescence
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches
A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe
Cytochemical study of the distribution of RNA and DNA in the synaptonemal complex of guinea-pig and rat spermatocytes
The distribution of DNA and RNA in the synaptonemal complex and related structures, was studied using high resolution cytochemical methods and in situ hybridization, in guinea pig and rat testis. Serial sectioning demonstrates that frequently the formation of the synaptonemal complex (SC) occurs without a previous development of isolated chromosomal axes. The lateral elements of the forming SC are in continuity with pairs of DNA-containing thin filaments. These chromatin filaments fold in numerous short loops just before incorporating to the lateral elements. Some of these loops are included in the ribbon-like structure of the lateral elements of the mature SC. We propose that these short loops contain the DNA attachment sequences associated with the proteins of the LE. During the formation of the SC one of the two chromatin filaments incorporates at the central surface of the forming lateral element (LE) and the other is located at the external side of the LE. This unexpected distribution does not correspond to the pair of thick filaments previously discerned in structure of the LE. The presence of RNA associated with the DNA-containing thin filaments, as well as with the axial chromatin elements of the forming SC, may be related with the transcription occurring during meiotic prophase, specially during zygotene stage. We propose that RNA is involved in a still uncharacterized process essential for pairing
Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism
Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
Making New "New AI" Friends : Designing a Social Robot for Diabetic Children from an Embodied AI Perspective
Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Robin is a cognitively and motivationally autonomous affective robot toddler with "robot diabetes" that we have developed to support perceived self-efficacy and emotional wellbeing in children with diabetes by providing them with positive mastery experiences of diabetes management in a playful but realistic and natural interaction context. Underlying the design of Robin is an "Embodied" (formerly also known as "New") Artificial Intelligence approach to robotics. In this paper we discuss the rationale behind the design of Robin to meet the needs of our intended end users (both children and medical staff), and how "New AI" provides a suitable approach to developing a friendly companion that fulfills the therapeutic and affective requirements of our end users beyond other approaches commonly used in assistive robotics and child-robot interaction. Finally, we discuss how our approach permitted our robot to interact with and provide suitable experiences of diabetes management to children with very different social interaction styles.Peer reviewedFinal Published versio
Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder
The aim of this study was to increase knowledge on therapy and educational objectives professionals work on with children with autism spectrum disorder (ASD) and to identify corresponding state of the art robots. Focus group sessions (n = 9) with ASD professionals (n = 53) from nine organisations were carried out to create an objectives overview, followed by a systematic literature study to identify state of the art robots matching these objectives. Professionals identified many ASD objectives (n = 74) in 9 different domains. State of the art robots addressed 24 of these objectives in 8 domains. Robots can potentially be applied to a large scope of objectives for children with ASD. This objectives overview functions as a base to guide development of robot interventions for these children
Robots in education and care of children with developmental disabilities : a study on acceptance by experienced and future professionals
Research in the area of robotics has made available numerous possibilities for further innovation in the education of children, especially in the rehabilitation of those with learning difficulties and/or intellectual disabilities. Despite the scientific evidence, there is still a strong scepticism against the use of robots in the fields of education and care of people. Here we present a study on the acceptance of robots by experienced practitioners (specialized in the treatment of intellectual disabilities) and university students in psychology and education sciences (as future professionals). The aim is to examine the factors, through the Unified Theory of Acceptance and Use of Technology (UTAUT) model, that may influence the decision to use a robot as an instrument in the practice. The overall results confirm the applicability of the model in the context of education and care of children, and suggest a positive attitude towards the use of the robot. The comparison highlights some scepticism among the practitioners, who perceive the robot as an expensive and limited tool, while students show a positive perception and a significantly higher willingness to use the robot. From this experience, we formulate the hypothesis that robots may be accepted if more integrated with standard rehabilitation protocols in a way that benefits can outweigh the costs
Synaptic Wnt signaling—a contributor to major psychiatric disorders?
Wnt signaling is a key pathway that helps organize development of the nervous system. It influences cell proliferation, cell fate, and cell migration in the developing nervous system, as well as axon guidance, dendrite development, and synapse formation. Given this wide range of roles, dysregulation of Wnt signaling could have any number of deleterious effects on neural development and thereby contribute in many different ways to the pathogenesis of neurodevelopmental disorders. Some major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorders, are coming to be understood as subtle dysregulations of nervous system development, particularly of synapse formation and maintenance. This review will therefore touch on the importance of Wnt signaling to neurodevelopment generally, while focusing on accumulating evidence for a synaptic role of Wnt signaling. These observations will be discussed in the context of current understanding of the neurodevelopmental bases of major psychiatric diseases, spotlighting schizophrenia, bipolar disorder, and autism spectrum disorder. In short, this review will focus on the potential role of synapse formation and maintenance in major psychiatric disorders and summarize evidence that defective Wnt signaling could contribute to their pathogenesis via effects on these late neural differentiation processes
- …