148 research outputs found

    НанофибробСтон: ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠ΅ Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅

    Get PDF
    Concrete is the most commonly used building material worldwide. One of its main disadvantages is the fragility of fracture and low crack resistance. The use of dispersed reinforcement of concrete composites is a promising direction in solving this type of problem. Dispersed fibers, evenly distributed over the entire volume of the material, create a spatial frame and contribute to the inhibition of developing cracks under the action of destructive forces. In order to increase the fracture toughness of concrete, dispersed fiber reinforcement is increasingly used in practice. The beginning of crack nucleation occurs at the nanoscale in the cement matrix. Thus, the use of nano-reinforcement with dispersed nanofibers can have a positive effect on the crack resistance of the cement composite. It is proposed to consider carbon nanotubes as such nanofibers. The presence of carbon nanofibers changes the microstructure and nanostructure of cement modified with carbon nanotubes. The result of the processes occurring in capillaries and cracks are deformations in the intergranular matrix, the free flow of which is prevented by rigid clinker grains and nanocarbon tubes, which creates a certain stress intensity at the tips of the separation cracks. The working hypothesis is confirmed that the required fracture toughness of structural concrete is provided by multi-level reinforcement: at the level of the crystalline aggregate of cement stone – carbon nanotubes, and at the level of fine-grained concrete – various macro-sized fibers (steel, polymer). Reinforcement of a crystalline joint with carbon nanotubes leads to an increase in the fracture toughness of the matrix (cement stone) by 20 %, compressive strength by 12 %, and tensile strength in bending by 20 %. When reinforcing at the level of fine-grained concrete, we obtain a composite – nanofibre-reinforced concrete with fracture toughness.Π‘Π΅Ρ‚ΠΎΠ½ являСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространСнным ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ Π²ΠΎ всСм ΠΌΠΈΡ€Π΅. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ Π΅Π³ΠΎ нСдостатками ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ…Ρ€ΡƒΠΏΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ растяТСнии ΠΈ низкая Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ диспСрсного армирования Π±Π΅Ρ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² – пСрспСктивноС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Π·Π°Π΄Π°Ρ‡. ДиспСрсныС Π²ΠΎΠ»ΠΎΠΊΠ½Π°, Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ распрСдСлСнныС ΠΏΠΎ всСму ΠΎΠ±ΡŠΠ΅ΠΌΡƒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, ΡΠΎΠ·Π΄Π°ΡŽΡ‚ пространствСнный каркас ΠΈ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΡŽ развития Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ ΠΏΠΎΠ΄ дСйствиСм Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΡ… сил. Для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ трСщиностойкости Π±Π΅Ρ‚ΠΎΠ½Π° Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ всС Ρ‡Π°Ρ‰Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ диспСрсными Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ. Начало зароТдСния Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½Ρ‹ происходит Π½Π° Π½Π°Π½ΠΎΡƒΡ€ΠΎΠ²Π½Π΅ Π² Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ наноармирования диспСрсными Π½Π°Π½ΠΎΠ²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ Π½Π° трСщиностойкости Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°. Π’ качСствС Ρ‚Π°ΠΊΠΈΡ… Π½Π°Π½ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΎΠ½ прСдлагаСтся Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Π΅ Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠΈ. ΠŸΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΎΠ½ измСняСт микроструктуру ΠΈ наноструктуру Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠ°ΠΌΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ процСссов, происходящих Π² капиллярах ΠΈ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½Π°Ρ…, ΡΠ²Π»ΡΡŽΡ‚ΡΡΒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² ΠΌΠ΅ΠΆΠ·Π΅Ρ€Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅, свободному Ρ‚Π΅Ρ‡Π΅Π½ΠΈΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ТСсткиС Π·Π΅Ρ€Π½Π° ΠΊΠ»ΠΈΠ½ΠΊΠ΅Ρ€Π° ΠΈ Π½Π°Π½ΠΎΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Π΅ Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ, Ρ‡Ρ‚ΠΎ создаСт Π² Π²Π΅Ρ€ΡˆΠΈΠ½Π°Ρ… Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ напряТСния. ΠŸΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° рабочая Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π°, Ρ‡Ρ‚ΠΎ трСбуСмая Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ конструкционного Π±Π΅Ρ‚ΠΎΠ½Π° обСспСчиваСтся ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹ΠΌ Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ: Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ кристалличСского заполнитСля Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ камня – ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠ°ΠΌΠΈ, Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ мСлкозСрнистого Π±Π΅Ρ‚ΠΎΠ½Π° – Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ ΠΌΠ°ΠΊΡ€ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΈΠ±Ρ€Ρ‹ (ΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅). АрмированиС ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠ°ΠΌΠΈ кристалличСского сростка ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ показатСля вязкости Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ (Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ камня) Π½Π° 20 %, прочности Π½Π° сТатиС Π½Π° 12 %, прочности Π½Π° растяТСниС ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΈΠ±Π΅ Π½Π° 20 %. ΠŸΡ€ΠΈ Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ мСлкозСрнистого Π±Π΅Ρ‚ΠΎΠ½Π° ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ – Π½Π°Π½ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½ с Π²ΡΠ·ΠΊΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ

    Nanofiber Concrete: Multi-Level Reinforcement

    Get PDF
    Concrete is the most commonly used building material worldwide. One of its main disadvantages is the fragility of fracture and low crack resistance. The use of dispersed reinforcement of concrete composites is a promising direction in solving this type of problem. Dispersed fibers, evenly distributed over the entire volume of the material, create a spatial frame and contribute to the inhibition of developing cracks under the action of destructive forces. In order to increase the fracture toughness of concrete, dispersed fiber reinforcement is increasingly used in practice. The beginning of crack nucleation occurs at the nanoscale in the cement matrix. Thus, the use of nano-reinforcement with dispersed nanofibers can have a positive effect on the crack resistance of the cement composite. It is proposed to consider carbon nanotubes as such nanofibers. The presence of carbon nanofibers changes the microstructure and nanostructure of cement modified with carbon nanotubes. The result of the processes occurring in capillaries and cracks are deformations in the intergranular matrix, the free flow of which is prevented by rigid clinker grains and nanocarbon tubes, which creates a certain stress intensity at the tips of the separation cracks. The working hypothesis is confirmed that the required fracture toughness of structural concrete is provided by multilevel reinforcement: at the level of the crystalline aggregate of cement stone – carbon nanotubes, and at the level of fine-grained concrete – various macro-sized fibers (steel, polymer). Reinforcement of a crystalline joint with carbon nanotubes leads to an increase in the fracture toughness of the matrix (cement stone) by 20 %, compressive strength by 12 %, and tensile strength in bending by 20 %. When reinforcing at the level of fine-grained concrete, we obtain a composite – nanofibre-reinforced concrete with fracture toughness

    Strength Indicators of Fiber Reinforced Concrete with Carbon Nanomaterials

    Get PDF
    Concrete composites with low defects, dense and homogeneous, with a high degree of adhesion between the cement matrix and aggregates, as well as a high ratio between static tensile and compressive strengths and plasticity have the best crack resistance characteristics. This ratio increases in the case of the use of fiber-reinforced concrete. Modern research in nanotechnology focuses on the management of matter at the nanoscale level, which makes it possible to create materials with new properties. Due to the high aspect ratio, flexibility, high strength and rigidity, carbon nanotubes (CNTs) exhibit reinforcing properties. Due to their nanoscale features, CNTs interact with a complex network of calcium-silicate-hydrate binder (C – S – H), contribute to a decrease in porosity and compaction of the cement stone structure, increase the shear forces of matrix adhesion in the contact zone. Thus, there are all prerequisites to assert that fiber concrete with a cement matrix modified with carbon nanotubes will have the required high strength characteristics and crack resistance due to multilevel dispersed reinforcement and the efficient operation of fiber in a nanomodified concrete matrix. This article presents the results of testing samples made of cement stone, concrete and fiber concrete with carbon nanotubes. The presence of carbon nanotubes in cement stone contributes to an increase in compressive strength by 11 %, tensile strength during bending by 20 %. The test results of samples made of reinforced fiber concrete modified with nanocarbon materials have shown an increase in tensile strength during bending up to 109 %, tensile strength during splitting up to 82 %, axial tensile strength up to 78 %

    Brussowvirus SW13 Requires a Cell Surface-Associated Polysaccharide To Recognize Its Streptococcus thermophilus Host

    Get PDF
    Four bacteriophage-insensitive mutants (BIMs) of the dairy starter bacterium Streptococcus thermophilus UCCSt50 were isolated following challenge with Brussowvirus SW13. The BIMs displayed an altered sedimentation phenotype. Whole-genome sequencing and comparative genomic analysis of the BIMs uncovered mutations within a family 2 glycosyltransferase-encoding gene (orf06955(UCCSt50)) located within the variable region of the cell wall-associated rhamnose-glucose polymer (Rgp) biosynthesis locus (designated the rgp gene cluster here). Complementation of a representative BIM, S. thermophilus B1, with native orf06955(UCCSt50) restored phage sensitivity comparable to that of the parent strain. Detailed bioinformatic analysis of the gene product of orf06955(UCCSt50) identified it as a functional homolog of the Lactococcus lactis polysaccharide pellicle (PSP) initiator WpsA. Biochemical analysis of cell wall fractions of strains UCCSt50 and B1 determined that mutations within orf06955(UCCSt50) result in the loss of the side chain decoration from the Rgp backbone structure. Furthermore, it was demonstrated that the intact Rgp structure incorporating the side chain structure is essential for phage binding through fluorescence labeling studies. Overall, this study confirms that the rgp gene cluster of S. thermophilus encodes the biosynthetic machinery for a cell surface-associated polysaccharide that is essential for binding and subsequent infection by Brussowviruses, thus enhancing our understanding of S. thermophilus phage-host dynamics.IMPORTANCE Streptococcus thermophilus is an important starter culture bacterium in global dairy fermentation processes, where it is used for the production of various cheeses and yogurt. Bacteriophage predation of the species can result in substandard product quality and, in rare cases, complete fermentation collapse. To mitigate these risks, it is necessary to understand the phage-host interaction process, which commences with the recognition of, and adsorption to, specific host-encoded cell surface receptors by bacteriophage(s). As new groups of S. thermophilus phages are being discovered, the importance of underpinning the genomic elements that specify the surface receptor(s) is apparent. Our research identifies a single gene that is critical for the biosynthesis of a saccharidic moiety required for phage adsorption to its S. thermophilus host. The acquired knowledge provides novel insights into phage-host interactions for this economically important starter species

    ΠœΠ½ΠΎΠ³ΠΎΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ качСства Π½Π°Π½ΠΎΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Ρ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π° для ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠΈ

    Get PDF
    Nanomodified fiber-reinforced concrete is a building material for which the required characteristics of fracture toughness are a distinctive feature. Determination of the stress intensity factor of fiber-reinforced concrete makes it possible to correctly assess the resistance of the material during the formation and development of cracks. The proposed multi-parameter methodology for assessing the quality indicators of nanomodified fiber-reinforced concrete makes it possible to evaluate the quality of a fiber-reinforced concrete structure in construction and laboratory conditions. To carry out control at the construction site, modern and long-used methods of non-destructive testing are used: ultrasonic sounding, ultrasonic tomography, elastic rebound, separation with chipping. For laboratory studies, the technique provides for the manufacture of prism samples that can be molded or cut from the body of the structure. This methodology makes it possible to obtain in laboratory conditions such material parameters as tensile strength in bending, tensile strength in splitting, critical stress intensity factor for normal separation, critical stress intensity factor for transverse shear, energy consumption for individual stages of deformation and destruction of the sample, as well as to evaluate the uniformity of distribution fibers. Moreover, it is provided to obtain all the parameters on one sample from the series, which eliminates errors and inaccuracies in the quality indicators of the material associated with different conditions of hardening, molding, inaccuracies in duplicating the composition.Наномодифицированный Ρ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½ – это ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», ΠΎΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Π΅ характСристики трСщиностойкости. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ коэффициСнта интСнсивности напряТСний Ρ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π° Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ сопротивлСниС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ многопарамСтричСская ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ качСства Π½Π°Π½ΠΎΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Ρ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π° позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ качСство Ρ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ конструкции Π² ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… условиях. Для осущСствлСния контроля Π½Π° ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ соврСмСнныС ΠΈ Π΄Π°Π²Π½ΠΎ примСняСмыС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ контроля: ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ΅ Π·ΠΎΠ½Π΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΡƒΡŽ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΡŽ, ΡƒΠΏΡ€ΡƒΠ³ΠΈΠΉ отскок, ΠΎΡ‚Ρ€Ρ‹Π² со скалываниСм. Для Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… исслСдований ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° прСдусматриваСт ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ призматичСских ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Π»ΠΈΡ‚Ρ‹ Π² Ρ„ΠΎΡ€ΠΌΡƒ ΠΈΠ»ΠΈ Π²Ρ‹Ρ€Π΅Π·Π°Π½Ρ‹ ΠΈΠ· Ρ‚Π΅Π»Π° конструкции. Π­Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… условиях Ρ‚Π°ΠΊΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Π½Π° ΠΈΠ·Π³ΠΈΠ±, ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ растяТСнии Π½Π° раскалываниС, коэффициСнт интСнсивности напряТСний ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ ΠΎΡ‚Ρ€Ρ‹Π²Π΅, коэффициСнт интСнсивности напряТСний ΠΏΡ€ΠΈ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΌ сдвигС, энСргозатраты Π½Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ стадии Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΎΠ±Ρ€Π°Π·Ρ†Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ распрСдСлСния Π²ΠΎΠ»ΠΎΠΊΠΎΠ½. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, прСдусмотрСно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ всСх ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΎΠ±Ρ€Π°Π·Ρ†Π΅ ΠΈΠ· сСрии, Ρ‡Ρ‚ΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ошибки ΠΈ нСточности Π² показатСлях качСства ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, связанныС с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ условиями твСрдСния, формования, ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡΠΌΠΈ ΠΏΡ€ΠΈ Π΄ΡƒΠ±Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ состава

    Multi-Parameter Methodology for Assessing Quality Indicators of Nanomodified Fiber-Reinforced Concrete for Construction Site

    Get PDF
    Nanomodified fiber-reinforced concrete is a building material for which the required characteristics of fracture toughness are a distinctive feature. Determination of the stress intensity factor of fiber-reinforced concrete makes it possible to correctly assess the resistance of the material during the formation and development of cracks. The proposed multi-parameter methodology for assessing the quality indicators of nanomodified fiber-reinforced concrete makes it possible to evaluate the quality of a fiber-reinforced concrete structure in construction and laboratory conditions. To carry out control at the construction site, modern and long-used methods of non-destructive testing are used: ultrasonic sounding, ultrasonic tomography, elastic rebound, separation with chipping. For laboratory studies, the technique provides for the manufacture of prism samples that can be molded or cut from the body of the structure. This methodology makes it possible to obtain in laboratory conditions such material parameters as tensile strength in bending, tensile strength in splitting, critical stress intensity factor for normal separation, critical stress intensity factor for transverse shear, energy consumption for individual stages of deformation and destruction of the sample, as well as to evaluate the uniformity of distribution fibers. Moreover, it is provided to obtain all the parameters on one sample from the series, which eliminates errors and inaccuracies in the quality indicators of the material associated with different conditions of hardening, molding, inaccuracies in duplicating the composition

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ состава Π½Π°Π½ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π° ΠΏΠΎ вязкости Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹

    Get PDF
    Concrete is a quasi-brittle building material that has low tensile strength. The process of its destruction under loading is inhomogeneous, due to the nature of the concrete structure mass, consisting of components with different physical and mechanical properties. Gradual deformation and destruction can be characterized as a process of formation and development of microcracks. The presence of different-sized components in concrete makes it possible to consider its structure as a multi-level system. In this system, each level is a matrix with its own structural inclusions, which play both a structure-forming role and the role of stress concentrators under the action of mechanical loads. The critical stress intensity factor is a good indicator of the crack resistance (fracture toughness) of a material. Nanoconcrete, from the point of view of a multilevel system, is a concrete composite with crack propagation inhibitors at the level of the cementing substance (carbon nanotubes are consi-dered as inhibitors). The presence of fiber fibers at subsequent scale levels allows us to consider concrete as a composite with multi-level dispersed reinforcement (nanofiber concrete). The paper discusses the change of concrete fracture toughness indicator (crack resistance) with dispersed reinforcement of the matrix at different structural levels. TheΒ presented for normal separation of notched cubes under eccentric compression with the determination of the stress intensity factor for concrete modified with carbon nanotubes acting as crack propagation inhibitors at the level of cementing substance (nanoconcrete), as well as for nanofiber concrete with dispersed reinforcement at the level of fine-grained concrete. Based on experimental studies by non-equilibrium methods of fracture mechanics, compositions of nanofiber-reinforced concrete of maximum crack resistance (fracture toughness) with different fiber concentrations and several types of matrices modified with nanocarbon additives are proposed in the paper.Π‘Π΅Ρ‚ΠΎΠ½ – ΠΊΠ²Π°Π·ΠΈΡ…Ρ€ΡƒΠΏΠΊΠΈΠΉ ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ Π½ΠΈΠ·ΠΊΡƒΡŽ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ растяТСнии. ΠŸΡ€ΠΎΡ†Π΅ΡΡ Π΅Π³ΠΎ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΈ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ носит Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€, обусловлСнный ΡΡƒΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ структуры Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ массы, состоящСй ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскими свойствами. ΠŸΠΎΡΡ‚Π΅ΠΏΠ΅Π½Π½ΠΎΠ΅ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ процСсс образования ΠΈ развития ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€Π΅Ρ‰ΠΈΠ½. НаличиС Π² Π±Π΅Ρ‚ΠΎΠ½Π΅ Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρƒ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² позволяСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π΅Π³ΠΎ строСниС ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΡƒΡŽ систСму. Π’ этой систСмС ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ прСдставляСт собой ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ со своими структурными Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ³Ρ€Π°ΡŽΡ‚ ΠΊΠ°ΠΊ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ, Ρ‚Π°ΠΊ ΠΈ Ρ€ΠΎΠ»ΡŒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠ² напряТСний ΠΏΡ€ΠΈ дСйствии мСханичСских Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ. ΠšΡ€ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ коэффициСнт интСнсивности напряТСний являСтся Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ трСщиностойкости (вязкости Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ) ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. НанобСтон, с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠΉ систСмы, прСдставляСт собой Π±Π΅Ρ‚ΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ с ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ распространСния Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства (Π² качСствС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Π΅ Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠΈ). ΠŸΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ Ρ„ΠΈΠ±Ρ€ΠΎΠ²Ρ‹Ρ… Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ°ΡΡˆΡ‚Π°Π±Π½Ρ‹Ρ… уровнях позволяСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π±Π΅Ρ‚ΠΎΠ½ ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ с ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹ΠΌ диспСрсным Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ (Π½Π°Π½ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½). Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрСно ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ показатСля вязкости Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ (трСщиностойкости) Π±Π΅Ρ‚ΠΎΠ½Π° ΠΏΡ€ΠΈ диспСрсном Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… структурных уровнях. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ испытаний Π½Π° Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΡ‚Ρ€Ρ‹Π² ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ²-ΠΊΡƒΠ±ΠΎΠ² с Π½Π°Π΄Ρ€Π΅Π·Π°ΠΌΠΈ ΠΏΡ€ΠΈ Π²Π½Π΅Ρ†Π΅Π½Ρ‚Ρ€Π΅Π½Π½ΠΎΠΌ сТатии с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ коэффициСнта интСнсивности напряТСний для Π±Π΅Ρ‚ΠΎΠ½Π°, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΊΠ°ΠΌΠΈ, Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΠΌΠΈ Π² качСствС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² распространСния Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства (Π½Π°Π½ΠΎΠ±Π΅Ρ‚ΠΎΠ½), Π° Ρ‚Π°ΠΊΠΆΠ΅ для Π½Π°Π½ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½ΠΎΠ² с диспСрсным Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ мСлкозСрнистого Π±Π΅Ρ‚ΠΎΠ½Π°. На основании ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований нСравновСсными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π½Π°Π½ΠΎΡ„ΠΈΠ±Ρ€ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π° максимальной трСщиностойкости (вязкости Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ) с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Ρ„ΠΈΠ±Ρ€Ρ‹ ΠΈ нСсколькими Ρ‚ΠΈΠΏΠ°ΠΌΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ

    ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ

    Get PDF
    The most common and reliable material without which modern construction is indispensable is concrete. The development of construction production is pushing for new solutions to improve the quality of concrete mix and concrete. The most demanded and significant indicators of a concrete mixture are the compressive strength and mobility of the concrete mixture. Every year, the volume of research on nanomaterials as modifying components of concrete is significantly increasing, and the results indicate the prospects for their use. Nanoparticles with a large specific surface are distinguished by chemical activity, can accelerate hydration and increase strength characteristics due to nucleation and subsequent formation of C–S–H and compaction of the material microstructure. Sol of nanosilica, which can be used instead of microsilica from industrial enterprises, and carbon nanomaterial have a wide reproduction base. This paper presents studies of these types of nanomaterials and the results of their application in cement concrete. Studies have shown that the effect is also observed with the introduction of an additive containing only one type of nanoparticles. The dependence of the obtained characteristics of cement concretes on the content of these nanomaterials has been established. It has been found that the best results were obtained with an additive in which the above-mentioned nanomaterials were used together. Compressive strength ofΒ  heavy concrete samples, improved by the complex nanodispersed system, was 78.7 MPa, which exceeds the strength of the sample containing the CNT additive in a pair with a super-plasticizer by 37 %. Β The paper proposes the mechanism for Β action of the presented complex additive.Π‘Π°ΠΌΡ‹ΠΌ распространСнным ΠΈ Π½Π°Π΄Π΅ΠΆΠ½Ρ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ, Π±Π΅Π· ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π΅ обходится соврСмСнноС ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, являСтся Π±Π΅Ρ‚ΠΎΠ½. Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ производства ΠΏΠΎΠ΄Ρ‚Π°Π»ΠΊΠΈΠ²Π°Π΅Ρ‚ ΠΊ Π½ΠΎΠ²Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΠΌ Π² ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠΈ качСства Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ смСси ΠΈ Π±Π΅Ρ‚ΠΎΠ½Π°. НаиболСС вострСбованныС ΠΈ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ смСси – ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ сТатии ΠΈ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ смСси. Π‘ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ Π³ΠΎΠ΄ΠΎΠΌ исслСдований Π½Π°Π½ΠΎΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π² качСствС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π±Π΅Ρ‚ΠΎΠ½Π° становится большС, Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΡ… примСнСния. Наночастицы, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ большой ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ химичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΡΠΊΠΎΡ€ΡΡ‚ΡŒ Π³ΠΈΠ΄Ρ€Π°Ρ‚Π°Ρ†ΠΈΡŽ ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Ρ‚ΡŒ прочностныС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π·Π° счСт Π·Π°Ρ€ΠΎΠ΄Ρ‹ΡˆΠ΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ формирования C–S–H, уплотнСния микроструктуры ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Π¨ΠΈΡ€ΠΎΠΊΡƒΡŽ Π±Π°Π·Ρƒ воспроизводства ΠΈΠΌΠ΅ΡŽΡ‚ золь Π½Π°Π½ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован Π²Π·Π°ΠΌΠ΅Π½ ΠΌΠΈΠΊΡ€ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° с ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… прСдприятий, ΠΈ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΉ Π½Π°Π½ΠΎΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π». Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны исслСдования Π΄Π°Π½Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² Π½Π°Π½ΠΎΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΡ… примСнСния Π² Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Ρ‚ΠΎΠ½Π°Ρ…. ИсслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ эффСкт Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ, содСрТащСй Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π²ΠΈΠ΄ наночастиц. УстановлСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… характСристик Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Ρ‚ΠΎΠ½ΠΎΠ² ΠΎΡ‚ количСства Π΄Π°Π½Π½Ρ‹Ρ… Π½Π°Π½ΠΎΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². ВыявлСно, Ρ‡Ρ‚ΠΎ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ с Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ совмСстно использовались Π²Ρ‹ΡˆΠ΅ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Π΅ Π½Π°Π½ΠΎΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹. ΠŸΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Π½Π° сТатиС ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² тяТСлого Π±Π΅Ρ‚ΠΎΠ½Π°, ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Π°Ρ комплСксной нанодиспСрсной систСмой, составила 78,7 МПа, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Ρ†Π°, содСрТащСго Π΄ΠΎΠ±Π°Π²ΠΊΡƒ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ Π² ΠΏΠ°Ρ€Π΅ с супСрпластификатором, Π½Π° 37 %. Π˜Π·ΡƒΡ‡Π΅Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия прСдставлСнной комплСксной Π΄ΠΎΠ±Π°Π²ΠΊΠΈ

    Oxygen transport in Pr nickelates: Elucidation of atomic-scale features

    Full text link
    Pr2NiO4+Ξ΄ oxide with a layered Ruddlesden–Popper structure is a promising material for SOFC cathodes and oxygen separation membranes due to a high oxygen mobility provided by the cooperative mechanism of oxygen migration involving both interstitial oxygen species and apical oxygen of the NiO6 octahedra. Doping by Ca improves thermodynamic stability and increases electronic conductivity of Pr2 βˆ’ xCaxNiO4+Ξ΄, but decreases oxygen mobility due to decreasing the oxygen excess and appearing of 1–2 additional slow diffusion channels at x β‰₯ 0.4, probably, due to hampering of cooperative mechanism of migration. However, atomic-scale features of these materials determining oxygen migration require further studies. In this work characteristics of oxygen diffusion in Pr2 βˆ’ xCaxNiO4+Ξ΄ (x = 0–0.6) are compared with results of the surface analysis by X-ray photoelectron spectroscopy and modeling of the interstitial oxygen migration by the plane-wave density functional theory calculations. According to the X-ray photoelectron spectroscopy data, the surface is enriched by Pr for undoped sample and by Ca for doped ones. The O1s peak at ~531 eV corresponding to a weakly bound form of surface oxygen located at Pr cations disappears at ~500 Β°C. Migration of interstitial oxygen was modeled for a I4/mmm phase of Pr2NiO4+Ξ΄. The interstitial oxygen anion repulses the apical one in the NiO6 octahedra pushing it into the tetrahedral site between Pr cations. The calculated activation barrier of this migration is equal to 0.585 eV, which reasonably agrees with the experimental value of 0.83 eV obtained by the oxygen isotope exchange method. At the same time, for the model compound Ca2NiO4+Ξ΄, obtained by isomorphic substitution of Pr by Ca in Pr2NiO4+Ξ΄, calculations implied formation of the peroxide ion comprised of interstitial and lattice oxygen species not revealed in the case of incomplete substitution (up to PrCaNiO4+Ξ΄ composition). Hence, calculations in the framework of the plane-wave density functional theory provide a realistic estimation of specificity of oxygen migration features in Pr2NiO4+Ξ΄ doped by alkaline-earth metals. Β© 2019 Elsevier B.V.Russian Science Foundation,Β RSF: 16-13-00112Support by Russian Science Foundation (Project 16-13-00112 ) is gratefully acknowledged
    • …
    corecore