7,844 research outputs found

    Hardy spaces and divergence operators on strongly Lipschitz domains in RnR^n

    Full text link
    Let Ω\Omega be a strongly Lipschitz domain of \reel^n. Consider an elliptic second order divergence operator LL (including a boundary condition on ∂Ω\partial\Omega) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function ff via the Poisson semigroup for LL to be inL1L^1. Under suitable assumptions on LL, we identify this maximal Hardy space with atomic Hardy spaces, namely with H^1(\reel^n) if \Omega=\reel^n, Hr1(Ω)H^{1}_{r}(\Omega) under the Dirichlet boundary condition, and Hz1(Ω)H^{1}_{z}(\Omega) under the Neumann boundary condition. In particular, we obtain a new proof of the atomic decomposition for Hz1(Ω)H^{1}_{z}(\Omega). A version for local Hardy spaces is also given. We also present an overview of the theory of Hardy spaces and BMO spaces on Lipschitz domains with proofs.Comment: submitte

    Materials SIG quantification and characterization of surface contaminants

    Get PDF
    When LDEF entered orbit its cleanliness was approximately a MIL-STD-1246B Level 2000C. Its burden of contaminants included particles from every part of its history including a relatively small contribution from the shuttle bay itself. Although this satellite was far from what is normally considered clean in the aerospace industry, contaminating events in orbit and from processing after recovery were easily detected. The molecular contaminants carried into orbit were dwarfed by the heavy deposition of UV polymerized films from outgassing urethane paints and silicone based materials. Impacts by relatively small objects in orbit could create particulate contaminants that easily dominated the particle counts within a centimeter of the impact site. During the recovery activities LDEF was 'sprayed' with a liquid high in organics and water soluble salts. With reentry turbulence, vibration, and gravitational loading particulate contaminants were redistributed about LDEF and the shuttle bay

    Modeling eddy transport of passive tracers

    Get PDF
    The mean advective and eddy transport of a passive scalar property is examined. Using a theory based on rational approximation of Lagrangian particle statistics, a transport equation relating the mean eddy flux and the mean concentration field Θ is developed. The transport equation is an elaborated advection-diffusion model in which the mean eddy flux is determined by the recent history of the gradient of Θ. The flux law involves an eddy diffusivity which depends on time lag and is defined in terms of fluid particle trajectories. Particle trajectories in simulated geophysical turbulence are used to test the applicability of the restrictions upon which the model is based. Examples are given of how Θ fields are affected by the difference between an advection-diffusion model and its elaborated relative

    Rhesus Monkeys' Valuation of Vocalizations during a Free-Choice Task

    Get PDF
    Adaptive behavior requires that animals integrate current and past information with their decision-making. One important type of information is auditory-communication signals (i.e., species-specific vocalizations). Here, we tested how rhesus monkeys incorporate the opportunity to listen to different species-specific vocalizations into their decision-making processes. In particular, we tested how monkeys value these vocalizations relative to the opportunity to get a juice reward. To test this hypothesis, monkeys chose one of two targets to get a varying juice reward; at one of those targets, in addition to the juice reward, a vocalization was presented. By titrating the juice amounts at the two targets, we quantified the relationship between the monkeys' juice choices relative to the opportunity to listen to a vocalization. We found that, rhesus were not willing to give up a large juice reward to listen to vocalizations indicating that, relative to a juice reward, listening to vocalizations has a low value

    Whitney coverings and the tent spaces T1,q(γ)T^{1,q}(\gamma) for the Gaussian measure

    Full text link
    We introduce a technique for handling Whitney decompositions in Gaussian harmonic analysis and apply it to the study of Gaussian analogues of the classical tent spaces T1,qT^{1,q} of Coifman, Meyer and Stein.Comment: 13 pages, 1 figure. Revised version incorporating referee's comments. To appear in Arkiv for Matemati
    • …
    corecore