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Modeling eddy transport of passive tracers

by Russ E. Davis!

ABSTRACT
The mean advective and eddy transport of a passive scalar property is examined. Using a

theory based on rational approximation of Lagrangian particle statistics, a transport equation
relating the mean eddy flux and' the mean concentration field 8 is developed. The transport
equation is an elaborated advection-diffusion model in which the mean eddy flux is determined
by the recent history of the gradient of e. The flux law involves an eddy diffusivity which
depends on time lag and is defined in terms of fluid particle trajectories. Particle trajectories in
simulated geophysical turbulence are used to test the applicability of the restrictions upon which
the model is based. Examples are given of howe fields are affected by the difference between an
advection-diffusion model and its elaborated relative.

1. Introduction
The challenge of ocean dynamics is not only its subtlety but also its complexity in

terms of the number of degrees-of-freedom required to describe it deterministically. To
cope with this, the effects of small-scale processes on larger scales are frequently
parameterized in terms of the large-scale field. In this the "eddy diffusion" analogy
with molecular transport has become conventional if not venerable. This analogy has
been justified by fundamentally phenomenological "mixing-length" arguments. It has
also been justified on somewhat more fundamental grounds using the assumption that
the transport process is Markovian and that the dispersing eddies are small compared
with the scales of the mean field. The purpose of this paper is to examine the
development of related transport models for the simplest case of a passive scalar
quantity (passive in the sense that it does not dynamically affect the velocity field).

Of concern are scalar fields ()obeying

a,() + u . 'i/O = q (1.1)

where u the nondivergent continuum velocity field and q is the source of 0, including
the convergence of molecular fluxes. Interest is focused on the mean concentration of e
defined by the average (.). Formally this average is an ensemble mean over many
examples of e evolution from identically prepared initial and source fields. Motivated
by problems like analysis of the quasi-steady general circulation, it is assumed that
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statistics of the flow field are stationary so that when applied to flow properties ( . ) can
be a time average. The challenge here is to model the effects of fluctuations on
evolution of the mean field. The conventional framework for this involves the
separation e = (0),0' = 0 - e, U = (u) and u' ~ u - U in terms of which e evolves
as

where

a,e + U . ve = Q - v . E (1.2)

Q(x, t) = (q(x, t), E(x, t) = (u'(x, t)O'(x, t).

E is the mean eddy flux of e-stuff and is what must be related to mean properties.
The phenomenological approach to parameterizing the eddy flux is simply to assert

an anlogy between eddies and molecules and invoke a flux vs. mean gradient law. This
analogy must be questioned unless there is a large separation of time and space scales
between fluctuations and the mean fields, as there is in the molecular case. A
somewhat more satisfactory approach (cf Csanady, 1973) is based on the assumption
that, over some time step, particle motion is a Markov process in the sense that a
particle's displacement over the time step does not depend on the particle's history. As
shown in the Appendix, the Markov assumption coupled with the restriction that the
mean field's scale is much larger than the distance a particle travels over the time step
can be used to develop an advection-diffusion equation. As discussed in the Appendix,
the weaknesses of this development are (i) the minimum useable Markov time step is
difficult to determine when the flow is statistically inhomogenous, as it is in the
presence of mean shear or confining boundaries, (ii) the "eddy diffusivity" depends
strongly on the mean flow and on the time step, and (iii) the scale separation restriction
is severe even for optimistic estimates of the minimum time step.

For these reasons it would be desirable to develop a transport equation by rational
approximation. The approach examined here is to average the formal solution to the
Lagrangian form of (1.1),

dO
dt = q, (1.3)

rather than to work with the averaged equation (1.2). This provides a specification for
the mean field in terms of the mean source Q and the statistics of the Lagrangian
trajectories along which (1.3) pertains. The important point is that mean field
evolution is fully determined by the mean initial and source fields and the statistics of
single Lagrangian particles. While multi-particle statistics are required to describe the
relative dispersion of particles making up individual property clouds (the dispersion
producing the stirring that leads to mixing), the mean field is fully determined by
single-particle statistics.
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Because the approach here is based on solving (1.3) before it is averaged, no
empirical parameters are introduced and the fluid's transport capacity is specified in
terms of particle statistics which are, in principle, observable. Rational approximation
of the averaged solution leads to an evolution equation for the mean field. This
equation involves advection by the Eulerian mean velocity U(x) and eddy dispersion
which is characterized by a time-dependent eddy diffusivity defined in terms of
Lagrangian particle statistics. The new transport equation is an elaborated advection-
diffusion model in which the elaboration accounts for the finite scales of the dispersing
eddies. Under specific conditions, which can be identified from observations of the
eddy diffusivity, the transport model reduces to the familiar advection-diffusion
equation.

The transport equation, developed in Section 2, rests on certain restrictions on the
flow field. In Section 3 analysis of particle motion in simulated geophysical turbulence
is used to test the applicability of these restrictions. These simulations also show how
mean transport is influenced by physical effects such as variation of the Coriolis
parameter, mean shear and confining boundaries. In Section 4 some ofthe implications
of the transport equation, and its relation to a pure advection-diffusion model, are
discussed.

2. The transport model

The purpose of this section is to develop a transport model through rational
approximation of the exact solution to (1.3). The development is simple once the
notation for averaging is understood. Quantities referenced to the Eulerian coordinates
position and time are denoted by a parameter list without a vertical bar; thus u(x, t) is
the velocity at x, t. The average of such quantities, for example U(x) = (u(x, t)}, is the
Eulerian time average at location x. Primed quantities are always departures from the
Eulerian mean. Quantities, such as velocity or position, referenced to particles contain
a vertical bar in the parameter list and the variables following the bar are the
Lagrangian labels of the particle. For example, r(tli, i) is the position at time t of the
particle passing through i, i.The velocity of a particle is u( t Ii, i) where

atr(tli, i) = u(tli, i) = u{r(t!i, i), t}, r(ili, i) = i. (2.1)

A particle can be labelled by any i, i pair along its trajectory. Formally, the average of
particle-labelled quantities is the ensemble average over all particles having the same
labelling coordinates. In the statistically stationary case this is the time average over
the temporal Lagrangian label and the result depends only on the difference between
observation and labelling times. For example, V(t - iii) = (u(ili, i» is the mean
velocity at time t of all particles passing through i, i and depends only on t - i. Note
that u'(ili, i) is the departure from U(x), not V, along the i, i trajectory so it is a mixed
Eulerian- Lagrangian quantity.
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a. The formal solution. Along particle paths the 0 evolution equation (1.3) has the
solution

O(x, t) = [I q{r(1lx, t), i} di + O{r(Olx, t), O}

= 101 di Jdi o{i - r(ilx, t)} {q(i, i) + o(i)O(i, O)}. (2.2)

The -0 lower limit denotes that the i integration range includes the full width of 0(7).
For incompressible flow the Jacobian relating x and i is unity so that o{i - r(ilx, t)} =

o{x - r(ili. i)}. Applying the filter (. ) to (2.2) gives

where

0(x, t) =1t di J di C(x, t - i, i) Q(i, t)
-0

C(x, t - i, i) = (o{i - r(1lx, t)}),

(2.3a)

(2.3b)

is the probability density of the position x at time t of those particles found at i, t and

<lex, t) = Q(x, t) + 0(t)0(x,0)

combines the mean source Q and the initial 8.
It must be noted that in applying the average ( . ) to obtain (2.3) it was assumed that

q(x, t) and O(x, 0) are independent of the fluctuations of fluid motion. Thus t = 0 is a
special time and 0 must be a strictly passive tracer. Vorticity and potential vorticity are
dynamically related to velocity, so these quantities cannot be expected to evolve
according to (2.3); Holloway and Kristmannsson (1984) presented a graphic example
of the differing initial evolution of vorticity and passive tracers in geostrophic
turbulence. In the same way, vertical transport of constituents such as temperature or
salinity which affect density will not be well described by (2.3). Consideration of active
tracers is beyond the scope of this paper.

Interpretation of (2.3) is straightforward. C(x, t - i, i)di is the transition probabil-
ity that the particle at x, t came from the region di surrounding i at time i; in
incompressible flow this is equal to the probability that the particle from i, t went to di
around x at t. As a function of x, C(x, t - i, i) is the concentration at time t of those
particles which pass through i, i. For t > i this could be determined from the average
density at time t of particles released at i, i. For t > t there is no simple experiment to
find C(x, t - t, i) as a function of i.

Formally, (2.3) specifies the mean field e in terms of the mean initial and source
fields and the complete statistical description of single Lagrangian particles. This
"solution" is conceptually opaque, not even providing a framework for separating
advection from eddy transport, and has no predictive ability until C is known. Its major
utility is in casting the mean property transport problem into the language of
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observable particle motion where physically motivated approximations are more easily
introduced.

Although the transition probability density C(x, t, i) could, in principle, be observed
it would require an unreasonable number of observations to do so. Direct observation of
C(x, t i) would involve dividing the region of interest in M spatial resolution cells of,
say equal, areas a(x). Then for every time lag t the fraction of particles arriving in any
a(x) from each a(i) would be C(x, t, i)a(i). From a sample of N particles in a(x) the
sampling error for Cwould be (cf Rendat and Piersol, 1971, §6.3.1)

C
liC = {NCa}'!2

where NCa will be recognized as the expected number of particles to have come from
a(i).

For C to be useful the error liC should be much smaller than the larger of C itself or
11M a, the density corresponding to a uniform source distribution over the M areas.
Meeting liC < ECor liC < EIMa for all Cvalues requires N> MIE2 samples in each of
the M destination regions. If the particle velocity decorrelation time is T, and the time
ranges t of interest are larger than T, then the decorrelation time for the displacements
of interest is O(t) and a total data set of tM2

/E
2 particle time units would be required.

This is larger by a factor of MtlT than the data set required to observe a diffusivity in
each of M regions with fractional error E.This extra factor even makes observing C in a
numerical model an impractically large problem.

The purpose of a 0 evolution equation, such as the advection plus eddy diffusion
model, is to replace the spatially and temporally global specification (2.3) with
something which is accurate enough to be predictive, is conceptually useful, and
involves only observable transport parameters. Since it is not practical to observe the
transition probability and (2.3) is not conceptually useful in describing transport, the
remainder of this section concerns conversion of the spatially and temporally global
integral of (2.3) into a useful transport model.

Time differentiation of (2.3a) followed by use of (2.1) and (2.3b) gives

where

a/0(x, t) + U(x) . 'V0(x, t) = Q(x, t) - 'V . E(x, t)

E(x, t) = J /dt Jdi e(x, t - t, i) Q(i, t)
-0

e(x, t - t, i) = (u'(x, t)li{i - r(flx, t)}).

(2.4a)

(2.4b)

(2.4c)

E is the eddy flux of 8-stuff while e(x, t - t, i) is the eddy flux through x, t of particles
from i, t.

In order to use (2.4) it is necessary to relate the eddy fluxes E and e to mean field
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quantities e and C, respectively. The approach here is to use a simple, if unusual, model
of particle motion to do this.

b. Particle motion model. The central element of this development is a statistically
optimized model for predicting a particle's trajectory from knowledge of its position x
at time t and of its velocity at that time. Define

s(i Ix, t) = r( t Ix, t) - r(i Ix, t) = x - r(il x, t)

to be the displacement from time i to t of the particle found at x, t. The most general
linear model for s is

sm(ilx, t) = amk(x, t - i)Uk(X, t) + xm(ilx, t) (2.5a)

where here and below the repeated index sum convention is implied. The remainder X
has a mean part and a fluctuation which is taken to be unpredictable. We seek the
model which minimizes the unpredictable part of X in the least mean square sense, that
is the a VS. t which minimizes

This quadratic form for a is minimized by the a which extremizes it, that is

amk(x, t - i) = Dk"nl(x)K"",(X,t - i)

where

D tn(x) = < Uk(X, t)u~(x, t)}

is the Eulerian covariance of u' and

(2.5b)

(2.5c)

(2.5d)

If there is some time lag T beyond which the velocity mean product in (2.5d) vanishes
then

K(X,t) = K~(X) for t > T. (2.5e)

The component of the total displacement s which is predictable from a single velocity
plays a central role in what follows. It is specially denoted

Since

s(ilx, t) = a(x, t - i) . u'(x, t). (2.5f)

(2.5g)

the typical size of s ceases to grow for time lags beyond T.

The model (2.5) is the kind of so-called optimal estimator frequently used in data
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analysis (e.g. in objective mapping). It may be regarded as a statistically corrected

form of the approximation s(Olx, t) = 1/ dp u(x, p) used in predicting Stokes drift in
wave fields. Here it is recognized that no exact linear relation exists between sand u
and the statistically best approximation is employed. In philosophy at least, this
approach is related to quasi-normal Markovian models where a nonlinear evolution
equation is modeled by a linear one driven by normally distributed random forcing.
Here the linear model is not explicitly stated but rather is implied by its transfer
function a(x, t). The assumption below that x' is strictly unpredictable takes the place
of the normally distributed forcing proviso, although it is not equivalent in detail.

Within the context of the model (2.5), the single-particle diffusivity K relates a
particle's displacement to its instantaneous velocity. The diffusivity predicts both
where a particle will go and ~here it came from. So long as K(X, t) does not vanish, a
particle's velocity provides some predictability of its displacement over time range t. It
is this predictability at large time ranges which leads to diffusive transport. The
diffusivity definition in (2.5d) differs from the more common diffusivity defined by
Taylor (1921); the Taylor diffusivity is a pure Lagrangian statistic while K is a mixed
Eulerian-Lagrangian statistic involving u', the departure from the Eulerian mean
velocity. Taylor's diffusivity was intended to apply to statistically homogeneous
situations and in that case the two definitions coincide. This is most easily seen in the
one-dimensional case with no mean flow when (2.5d) is

K(X, t) = (u(x, to}{r(tolx, to) - r(to - tlx, to)})

and the Taylor q.iffusivityis

K(x. t) = (u(t + ilx, 'i){r(t + ilx. 'i) - r(ilx. i)}).

For statistically homogeneous cases averaging can be extended over x since K is
independent of x. Thus particles in the Taylor definition can be relabelled according to
x = r(t + ilx. i), to = t + 'i to convert the definition of K(t) to the one for K(t). Thus
(2.5d) may be regarded as a generalization of the Taylor diffusivity to statistically
inhomogenous flows.

Using the particle motion model (2.5), a simple relation between E and 0 is obtained
under two different sets of restrictions. In one, conditions are placed on the spatial of Q
and the spatial variations of particle displacement statistics. In the other, the turbulent
velocity u' is taken to have an approximately Gaussian probability density and
restrictions are placed on the spatial variation of particle displacement statistics. In
both developments the lack of correlation between u'(x, t) and x(ilx, t) in the model
(2.5) is taken to imply that they may be treated as statistically independent. Notation
is simplified by suppressing the arguments of u'(x, t), a(x, t - 'i), x(il x, t), and §(iI x,
t). LQ is taken to be the spatial scale over which Q varies and LX is the scale over which
the particle statistics (x2) and (52) vary.
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c. Scale separation. The trajectory prediction model (2.5) can be used to write (2.3)
and (2.4) as

[e(x,t)] J' _([1]_ -)= dt Q(x - a . u' - x, t) ,
E(x, t) -0 u'

(2.6a)

where the average is over all values of u' and x, which are assumed statistically
independent. If S = a . u' is much smaller than LQ + (x2 )1/2 then Q can be expanded
around x - X to give

J' - - ([aQ(p - x, t)] )En(x, t) = - dt Knm(X,t - t) a .
-0 Pm p-x

(2.6b)

The derivative in (2.6b) is not simply ax because the statistics of X may depend on x. If
the statistics are homogeneous then the average of Q(p - x) will not depend on x and
the derivative becomes a simple x-derivative. In general

(2.6c)

(2.7a)

(2.7b)

Integrating this by parts and noting the definition ofe in (2.6a) leads to the elaborated
flux vs. gradient law

a
En(x, t) = -Knm(X, t) ~(x, t)aXm

-I' dt aKnm(X~_t- t) aa [e(x, t) - e(x, t)]
-0 t Xm

= _ Jf dt aKnm(X,t - t) ae(x, t)
-0 at aXm

= _ I' di aKnm(~'i) ae(x, t - i) .
-0 at Xm

The flux law (2.7) is the major theoretical result of this paper. It specifies the flux of
a passive scalar from the recent history of its mean concentration. The driving force for
the eddy flux at time t is the sum of previous e gradients at times t - t weighted by the
time derivative of K at time range t. This is an elaboration of the familiar eddy diffusion
model, the elaboration reflecting the finite scales of the dispersing eddies. For t > 'T the
diffusivity in the flux vs. gradient part of (2.7a) becomes constant and the second term
depends only on the recent history of e for times between t - 'T and t. If e does not vary
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over that time range, this extra "history" term vanishes, the eddy flux is simply
proportional to the mean gradient, and e evolves according to a pure advection-
diffusion equation with the constant eddy diffusivity KOO(X).

The development above is similar to the conventional justification of a diffusive flux
law (ef the Appendix). It is based on the particle displacement being small,
specifically

and (2.8)

The first of these is straightforward because <.:e) 1/2 reaches an asymptotic value which
LQ must exceed. The second is more difficult to assess because both the mean square
and inhomogeneity scale of x(ilx, t) depend on t - i. We note that the flux law (2.7)
depends on the history of e, but only over t > i > t - r. Thus if the restrictions (2.8)
apply for t - i.=5 OCr) then the flux law (2.7) must apply for all t because the equation
itself contains no reference to the initial time t = 0 once K has reached its asymptotic
value. In essence the solution for large time t can be obtained by reinitializing (2.7) at
any time previous to t - r.

d. Gaussian u'. Because u' and X are treated as statistically independent, (2.3) and
(2.4) can be written as

[e(x,t)] It -J ([1] ) -= d t di 0(i - x + a . u') (Q(i - x);
E(x, t) -0 u'

(2.9a)

the first average is over values of u' and the second is over x. The average over u' can be
evaluated from the probability density of u'. Suppose this probability density G(u'; x)
has an approximately Gaussian form so that

where D is the velocity covariance of (2.5c). Then

(u~h(x - x + a . u') = -Dnm J du :~ (h(x - x + a . u')

= Knm(X, t - i) iJ~ (h(x - x + a· u'). (2.9b)
Xm

This is a valid approximation so long as the higher cumulants ofu' are small compared
with the appropriate powers of the covariance D.

If the statistics of the predictable displacement S = a . u' vary on the scale LX and if
(3'2)1/2« LX then

~ (h(x - x + a . u') "" - ~ (h(x - x + a . u').
iJxm iJxm



644 Journal of Marine Research [45,3

In a statistically homogeneous situation this relation is exact because neither a nor the
statistics of u' depend on x. Similarly, in a statistically homogeneous situation
(Q(x - X» does not depend on x; even though Xis a function of x, its statistics are not.
In general

~ (Q(x _ X» = / aQ(x - X) aXm) = o[ Q (X~)1/2]
aXn \ aXm aXn L~ + (X~)1/2 L~ .

Note that the scale of (Q(x - X» exceeds LQ by the typical size of x.
The scale of (o(x - x + a . u'» is {3,2)1/2so that we may write, from (2.9a) and

(2.9b),

(u~o(x - x + a . u'»(Q(x - X»
~ a ~

"" - Knm (x, t - t) -a [(o(x - x + a . u'»(Q(x - X»] (2.9c)
Xm

so long as

and (2.9d)

The second of these compares with the restriction on LQ in (2.8). In this case, however,
if the first restriction is met then the second follows automatically.

Substitution of (2.9c) into (2.9a) followed by parts integration over t again yields the
elaborated flux vs. gradient relation (2.7).

e. Transport ofe. Both the above developments lead to the eddy flux law (2.7) and,
consequently, the 0-stuff transport equation

a,0(x, t) + Vex) . V'0(x, t) - Q(x, t)

J' ~aK(X, t - t) ~
= V' . K(X, t) . V'0(x, t) + V' . dt ~ . V'[0(x, t) - 0(x, t)]

-0 at

J' ~aK(X, t) ~~ V' . dt -.-_ - . V'0(x, t - t). (2.10)
-0 at

Because the diffusivity K depends on time, the eddy flux of 0 depends on the history of
V'0, not just its present value. If K were independent of time, then the right hand side of
(2.10) would reduce to V' • K • V'0 and 0 would evolve by advection plus diffusion. If K

reaches its asymptotic value quickly, as it does in the molecular diffusion case, the
extra "history" term is negligible.

The transport model (2.10) is valid under two sets of restrictions:

or

and (2.11a,b)

u' is Gaussian and (2.12a,b)
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In scale-separation restriction (2.11) XT = X(t - 7 Ix, t), the unpredictable displace-
ment over time lag 7. The scale restrictions (2.11) can be much more stringent than
(2.12). First, (2.12) places no restrictions on the scale of Q; evidently the Gaussian-u'
condition avoids the requirement invoked in heuristic developments of the eddy
diffusion flux law that the scale of e be large. Second, the displacement X7, includes
the mean particle displacement and may, therefore, be much larger than s, making
(2.11 b) much more stringent than (2.12b). The stringency of the conditions (2.11) and
(2.12) is addressed further in the following section.

It may appear surprising that the normally distributed u assumption is important in
determining the form of the e evolution equation. Recall, however, that normally
distributed displacements are an integral part of the random walk processes producing
diffusion. Here displacements over short times are normally distributed only if u is
normally distributed. Evidently, normally distributed displacements lead to much less
strigent scale separation restrictions on diffusive eddy transport laws and their
elaborations.

Suppose that for some t > 7 the time scale, Ta, of e becomes great enough that a two
term Taylor series expansion about t is adequate to describe e(x, t) over t - 7 < t < t.
Then

(2.13a)

and the history term contributes an 0(71 Ta) fraction to the eddy flux. In an initial
value problem, the history contribution will presumably become negligible after some
time. This does not, however, imply that e predicted by an advection-diffusion model
will be accurate at this time; the effect on e of earlier history correction to E will persist
beyond the time a simple flux vs. gradient law pertains.

The structure of the history correction to E can be seen by writing (2.13a) as

where 7"",(X) = ll~m((X»; (2.13b)
Knm X

there are no implied sums in (2.13b). If K approaches K~ without overshooting, then Il"",
will be of the same sign as K:", the 7nm'S will be positive, and the flux E at time t will be
proportional to the gradient of e at earlier times. It is possible, if pathological, for the
times tnm to be negative.

We close this section with a review of the structure and implicit restrictions of the
development leading to the elaborated advection-diffusion model (2.10). The develop-
ment is based on rational approximation of the particle statistics determining
C(x, t - t, i) which describes the probability that a particle found at x, t was near i at
t. Evolution of C is described by (2.4), which involves the advective flux UC and an
eddy flux.

The approach here is based on a statistically optimized linear estimator to predict
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particle's displacement from its velocity at one time. The linear estimator naturally
introduces the single-particle diffusivity K(X, t) of (2.5). This mixed Eulerian-
Langrangian statistic is the mean product of a particle's displacement and the velocity
perturbation from the Eulerian mean at one end of the trajectory. This differs from the
more usual definition of the diffusivity which does not involve the perturbation from
the Eulerian mean. Interest here is in the "backward looking" diffusivity relating a
particles previous displacement to its present velocity perturbation.

Two sets of restrictions lead to an elaborated eddy diffusion law for the eddy flux of
e. One places fairly stringent limits on the size of particle displacements over the
Lagrangian velocity decorrelation time scale T as compared with both the spatial scales
over which @ and particle motion statistics vary. The other leads to less restrictive
conditions on the particle displacement as compared with particle statistics inhomoge-
neity scales, but requires the turbulent velocity to have an approximately normal
probability distribution. We turn now to examining how stringent these requirements
are.

3. Numerical experiments

The development in the previous section led to the elaborated eddy diffusion model
(2.10) for the evolution of e. In this model the eddy flux E is determined by the recent
history of the gradient of e and the time-dependent single-particle diffusivity

(3.1 )

where

sCilx, t) = x - rCilx, t)

is the displacement the particle found at x, t undergoes from time t to time t. Transport
is determined by K(X, t) which approaches the asymptotic value K~(X) for t > T.

The theoretical development is based on the restrictions (2.11) or (2.12) being met.
These concern the typical size of the displacement ~ which is predictable from u'(x, t),
the size of the unpredictable part of displacement, xCii x, t), and the probability
density of u'(x, t). The purpose of this section is to see how stringent these restrictions
are in fields of simulated geophysical turbulence. Additionally, the effect of variation
of Coriolis' parameter, mean velocity shear and confining boundaries on property
transport will be seen; the intent is not to parameterize K but simply to explore
qualitatively the effect of these physical quantities.

a. Description of the experiments. Realizations of idealized one-layer quasi-geostro-
phic turbulence were constructed from a conventional 64 x 64 pseudo-spectral model
of

(3.2)
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where F is a random torque used to maintain turbulence and 1/; is the streamfunction of
the velocity u. Vorticity was advanced numerically using an explicit centered time
difference (leap-frog) scheme with smoothing every 2000 steps. Particle trajectories
were computed using a second order interpolation of velocity from the computational
grid; this interpolation fits the velocity at the grid point nearest the particle and the
four nearest neighbors of that point. Particle positions were advanced using a second
order Runge-Kutta scheme. Various experiments were carried out, each over a
statistically steady time range of 32 during which 64 widely spaced particles were
tracked. Eulerian and Lagrangian statistics were computed from these data.

Results are reported in terms of variables made dimensionless using the width of the
computational domain Le, the characteristic velocity Ue, and the time Te = Le/Ue. The
forcing F had unit variance, a wavenumber spectrum which is white over the
wavenumber range 6 x 211" ::s: kx, ky::S: 8 x 211", a temporal correlation which decayed
exponentially (F is a first order Markov process) with a scale of one time unit, and a
Gaussian distribution. Lateral damping was minimized subject to the requirement that
enstrophy not accumulate at high k. The forcing amplitude t and the drag 'Y were
adjusted to set the total kinetic energy near unity and shape the energy spectrum.

Four experiments are reported: fP is the basic f -plane experiment with {3= 0, no
mean flow, and periodic boundary conditions at x = 0, 1 and y = 0, 1; {3Pis the same
situation with {3= 820 corresponding to a small (3-Rossby number; SHR is like fP
except that the mean shear U = sin(211"Y) is imposed; WALL is like fP except that
no-normal-flow no-shear boundary conditions (1/; = if,y1/; = a;yyy1/; = 0) are imposed at
y = 0 and y = 0.5; the higher order boundary condition is a consequence of the

Table 1. Parameters for experiments reported here and V02 from Haidvogel and Keffer
(1984). Runs reported here used a biharmonic viscosity v = 7.6 X 10-8 while V02 used
harmonic lateral damping. {3is the dimensionless gradient of the Coriolis parameter (inverse
,8-Rossby number) in (3.2). (U'2) is the eddy kinetic energy (excluding the mean flow in
SHR). Tr = (t'2) -1/2 is the eddy turnover time. T.., - 1h is the "bottom friction" damping
time. T. = (lIki)-1 is the lateral friction damping time at the characteristic energy
wavenumber kt = (<r2)/{u'2)1/2; for V02 T. = (lIkl)-I. TMAX - (lIk~AX)-] is the lateral
damping time at the highest resolved wavenumber kMAX; for V02 TMAX = (lIk~AX)-I. E is the
strength of the random torque used to excite turbulence. Eddy statistics are reasonably
homogeneous across the SHR domain. For WALL statistics are reasonably homogeneous over
the 85% of the domain away from the walls; quoted values are for this region.

fP ,8P SHR WALL V02

(U'2 ) 0.97 0.97 0.46 1.10 1.3
,8 0 820 0 0 395
Tr 0.026 0.027 0.035 0.025 0.019
T.., 1.6 1.6 0.8 1.6 1.6
Tv 6.3 6.3 4.2 5.7 2.9
TMAX 0.008 0.008 0.008 0.008 0.24
E 0.18 0.18 0.16 0.18
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psuedo-spectral representation used. The parameters for these experiments are given
in Table 1 along with some derived measures which can be used to compare with
models using different parameterizations; included in the table are values from
Haidvogel and Keffer's (1984) experiment V02 in which particle motion was
simulated.

Figure 1presents the scalar wavenumber spectra S,,(k), S.(k) and Sr(k) ofvelocities
u', v' and vorticity t,respectively. These have similar structure for all experiments, all
being dominated by low-k velocity, all exhibiting an enstrophy peak at k's slightly
above those excited by random forcing, and all having a featureless cascade beyond
this enstrophy peak with a spectral slope near k-s or k-6

• Differences between the
experiments are observed primarily at low-k where (3P shows a relative deficit of
energy and both (3P and SHR are anisotropic with (3P dominated by u' and SHR
showing a slight excess of v' energy.

o 10
kl'21r

20

10

10

10

10

3010

Figure 1. Scalar wavenumber spectra of u' (solid), v' (dotted), and r (dashed) determined from
the variance of Fourier coefficients of streamfunction. For example the spatial and temporal
average variance of u' is the integral of the u' spectrum from k = 0 to k - 6411" where k = Ikl.
The logarithmic scales for each experiment listed in Table I are offset by three decades. The u'
and v' scales are on the left and the r scale is on the right. The energy of the mean flow is
excluded from the SHR spectra.
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Figure 2. Eulerian average (solid) and Lagrangian average (dashed) time-lagged velocity
correlations forfP and ~P. The Eulerian correlation is (u'(x, to)u'(x, t + to» I (U,2) where the
average is over x and to. The Lagrangian correlation is (u'(x, to){u(t + to Ix, to) - Vx(t)})
normalized by the appropriate standard deviations. While V(O) = U = 0, over longer
displacement times there is apparently a small Stokes Drift in ~P leading to Vx'" -0.06 but
determination of V is uncertain because of the long time scale of u'.

Figure 2 presents the Eulerian and Lagrangian averaged time-lagged correlations of
velocity for the homogeneous runs fP and ~P. In fP the Eulerian time scale is
substantially longer than the Lagrangian time scale; this has been observed in other
simulations (Davis, 1982 and 1983) and in drifter observations of coastal currents
(Davis, 1985) but contrasts with the finding of Freeland et al. (1975) that the Eulerian
and Lagrangian time scales were nearly equal for mid-depth velocities in a field
dominated by mesoscale eddies. In ~P the Eulerian and Lagrangian time scales are
comparable and are significantly shorter than those in fP. There is substantial
anisotropy in {3Pand much of the u' energy is in very low frequency motion. Apparently
low {3-Rossbynumber turbulence is dominated at low frequency by zonal variability.
From the practical vantage of measuring flow statistics, these low frequency motions
substantially increase the length of observation required to achieve an accurate
estimate.

It is hypothesized that the Lagrangian time scale infP is shorter than the Eulerian
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time scale because particles are swept through the relatively stationary f-plane
turbulence faster than the eddies evolve at one point. The large (3in (3P leads to a
substantially more rapid decorrelation of velocity than infP, presumably because the
turbulence takes on Rossby wave characteristics and propagates. In fact the spectrum
of v' has a clear peak at w "'"30 which corresponds in the Rossby wave dispersion curve
to wavenumbers near the peak of the S~(k) and S.(k) spectra in Figure 1.The Eulerian
and Lagrangian time scales in (3Pare then approximately equal because eddies evolve
at one point more rapidly than particles are swept through them; the Lagrangian time
scale then reflects the short Eulerian scale.

Figure 3 shows y-profiles of Eulerian variance and Reynolds stress for the two
inhomogeneous experiments WALL and SHR. In WALL, statistics are reasonably
homogeneous except within y "'"0.05 of the wall where v' and r'are suppressed and u' is
increased; the total kinetic energy varies little across the channel. This behavior is
qualitatively similar to that observed in surface currents near the coastal boundary
(Davis, 1985). In SHR, u', v' and r' are slightly greater where dy(U) is greatest but
vary little across the sheared flow.The observed mean velocity differs slightly from the
true mean ( u) = sin (21rY) was imposed) because of sampling error; as seen below the
time scale of u' is long in SHR, as it is in (3P.In SHR the Reynolds stress (u'v') induced
by the imposed mean shear is small and negative and is extreme where Oy(u) is
maximum, consistent with an eddy viscosity notion; the implied momentum diffusivity
is about 0.01. The Eulerian time scales in WALL are generally similar to fP,
presumably because of the absence of Rossby wave characteristics. The same is true of
SHR near y = 0 where the Eulerian time scale is not shortened by mean flow
advection. The Lagrangian time scales of these flowsare discussed further below.

0.25

<,,2> •••
4096 •

y

Figure 3. Profiles of Eulerian statistics across the inhomogeneous flows WALL (with v = 0 at
y = 0, 0.5) and SHR (with (u) = sin 21/"Y), The shear stress (u'v') is anti symmetric across y =
0.25; all other properties are symmetric. In SHR (u) is antisymmetric across y = 0; all other
properties in SHR are symmetric there. At y = 0 in SHR (u'v') '" - 0.0 I Oy(u).
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b. Description of eddy transport. We turn now to examining the magnitude and time
variation of the diffusivity K(X, t) and the characteristic time T at which reaches its
asymptotic value K~(X). Figures 4-6 show the time variation of K in the various
experiments. K(X, t - i) was computed by sampling trajectories periodically to define x
and t and then looking backward through the trajectory to compute s(ilx, t) of (4.1) at
various i.Estimates of the time when K becomes time independent to within sampling
error provides the values of T. Table 2 summarizes K"" and T for the experiments; the
other entries in Table 2 are discussed below.

Figure 4 describes the homogeneous experimentsfP and ~P; experimentfP is also
isotropic so Knm(I) = li"",K(t). Figure 5 describes WALL; results are shown for two
regions. In the interior region 0.06 < y < 0.25 both Eulerian and Lagrangian statistics
vary slowly with y. Within a boundary layer with thickness of 0(0.05) statistics vary
rapidly (see also Fig. 3) and the 0 < y < 0.03 average in Figure 5 is representative of
this boundary layer. Figure 6 describes the SHR experiment, again for two regions;
0.19 < Y < 0.25 is typical of the low shear portion of the flow (where the gradient of
mean vorticity is greatest) and 0 < y < 0.06 is a region of large shear. For the WALL
and SHR experiments symmetries have been used to collapse all observations into the
range 0 < y < 0.25.

According to (2.5), K = D . a so that a is a characteristic time relating K and the
mean square turbulent velocity. From the summary in Table 2 it is clear that this time
is of the same order of magnitude as the time scale computed from rms vorticity or the
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Figure 4. The isotropic diffusivity K(t) for fP (solid) and Kxit) (dashed) and Kyy(t) (dotted) for
(jP. Note that the values plotted are K x 2 for fP and Kyy x 10 for I3P.
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Figure 5. The eddy diffusivities ICxx(y, t) (solid line) and "yiY, t) (dashed line) for WALL in
which vy = 0 at y = 0 and 0.5. The upper panel corresponds to the relatively homogeneous
region away from the walls. Note that ICyy varies on two time scales. The lower panel is the
average of IC(Y, t) over 0 < y < 0.03, the inner half of the wall boundary layer. By symmetry ICyx
and ICxyvanish; ICyyvanishes at y = O.

characteristic velocity and length scales. No simple scaling is, however, capable of
describing the variations between experiments and, in contrast to the observation of
Price (1983), this characteristic time is certainly not constant. By the same measure,
the characteristic length scale K/ u' also shows no evident predictable pattern.

In contrast to the similarity of Eulerian statistics between experiments seen in
Figures 1 and 2, the diffusivities differ by nearly two orders of magnitude between
experiments. The large {J in {JP reduces Kyy by a factor of 10 fromfP while the zonal
diffusivity Kxx is increased by a factor of 3. In the interior region of WALL, Kxx is little
changed fromfP but Ky, is substantially reduced, showing an unexpected effect of the
relatively distant v = 0 boundary condition; the Eulerian statistics of Figure 3 give no
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Figure 6. The eddy diffusivities for SHR with U = sin (21l"Y). The curves are Kxx(Y, t) (solid),
Ky,(Y, t) (dashed), K.y - (u'fI.) (dotted) and Ky. - (u'ydy) (solid). Results from 0 < y < 1 are
collapsed into the range 0 < Y < 0.25 using the symmetries about y = n/4. The upper panel
corresponds to the 25% of the y range with the smallest mean shear, the lower panel to the 25%
with the largest shear.

indication of this anisotropy. Within the WALL boundary layer Kyy is much reduced (it
must vanish at y = 0) while K"" is increased somewhat. In both regions of SHR the
potential vorticity gradient O;,U produces an effect similar to that of {j in {jP: Kyy is
reduced and K"" is somewhat increased. The mean shear also generates off-diagonal
diffusivity components K,,, - (v's,,) and K", = (u's,) which are largest where the shear
is large. K is very unsymmetric with \K,,,I much exceeding \K",\.

Between experiments the time behavior of the diffusivity K varies as much as its
magnitude but some general comments apply. First, in most cases the time lag 1" before
K becomes independent of time is of the order un~ty, substantially longer than the time
scale computed from rms vorticity or from characteristic eddy velocity and space
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Table 2. Parameters determining passive scalar transport. Results for WALL and SHR are
given for two y ranges. K~ is the asymptotic diffusivity K(Y, r) where r is the time beyond which
K does not vary. il~is the RMS size of the predictable displacement ilfor time lags greater than
r. In some experiments s, exceeded s; before equilibrating; the temporary maximum is S~AX.

X is the RMS value of X, - x(rlx, t), the unpredictable displacement which enters (2.11). In
x, of WALL 0 < Y < 0.03 and Xx of SHR 0.19 < Y < 0.25 the mean of X is a significant part of
this RMS value.

Exp. fP {JP WALL SHR

Y 0.06-4).25 0-0.03 0.19-0.25 0-0.06
K;x 0.05 ",,0.2 0.04 0.07 0.05 0.06
K;y 0.05 0.003 0.01 0.004 0.02 0.02
K;y 0 0 -0.002 -0.007
K;x 0 0 -0.04 -0.14
r 0.3 ,.,3 1.5 0.3 1.5 1.5
s; 0.07 0.4 0.06 0.07 0.15 0.25
r 0.07 0.005 0.015 0.01 0.05 0.03,
-MAX 0.07 0.02 0.05 0.02 0.06 0.05s,
Xx 0.13 0.7 0.4 0.2 1.0 0.7
X, 0.13 0.1 0.25 0.2 0.2 0.2

scales; apparently T is determined by the scales ofthe largest eddies. Second, variation
of K frequently occurs on two time scales. For example in {jP, Kyy equilibrates quickly
while Kxx is still varying at the longest observed time lag; in WALL Kyy itself varies on
two time scales.

In fP K equilibrates at T "" 0.3. The small {j-Rossby number in {jP significantly
speeds equilibration of Kyy but T is set by the slow equilibration of Kxx and is too long to
be well determined. As was true of the magnitude of K, the effect of iJ;yU in SHR is
similar to that of {j in (jP: Kyy equilibrates quickly but Kxx requires a long time to reach
its asymptote. The slow equilibration of Kxx means that the history corrections to a flux
vs. gradient law in (2.10) will be relatively important in zonal transport of passive
scalars. In WALL Kxx equilibrates quickly but Kyy continues to vary on a time scale of
0(1), even in the interior; by comparison with fP, this is another indication of the
effect of the distant wall boundary conditions.

The y-variation and sign of the off-diagonal elements of KinSHR are consistent with
mixing length reasoning. For example, at y = 0 where U = 0 and iJ,U is largest,
particles arriving at y = 0 with v > 0 have a negative s~, as if they had adopted the
mean velocity for y < O. Similarly, particles which have undergone a positive y
displacement arrive with negative u', again appropriate to the mean flow in their
previous location. The magnitude of the diffusivity Kyy in SHR is, on the other hand,
inconsistent with the notion that either momentum or vorticity is transported like a
passive scalar. At y = 0 Figure 3 indicates that - (u'v' > "" 0.07 and iJyU = 211'; the
associated eddy viscosity is only half of K;,. If r were transported like a passive scalar
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- (v'S') = ay(v'u') = -K;ya;yu.

Figure 3 shows that ay(v' u') "" 0.3 at y = 1/4; this corresponds to a vorticity diffusivity of
0.01, again only half of the observed K;". One may speculate that the mean vorticity
gradient ayyU serves to selectively constrain the y-displacement of particles on which
vorticity is conserved in the absence of dissipation, much in the manner that {j
constrains particles in the (jP experiment.

In general, these results show that the diffusivity K and its time variation are strong
functions of flow parameters and that their dependence on these parameters is not
straightforward. Parameterization of K, or even K~ will not be easy.

c. Restrictions on validity of the transport model. The conditions under which the
elaborated advection-diffusion model (2.10) is valid are given in (2.11) and (2.12). The
"scale separation" development of Section 2c is valid if both conditions in (2.11) are
met. The "quasi-Gaussian u'" development requires both conditions (2.12) to be met.
The scale separation derivation requires particle displacements over time T to be
smaller than LQ, essentially the scale of e, and smaller than LX, the inhomogeneity scale
of particle displacement statistics. The only scale restriction for the quasi-Gaussian
derivation is that the predictable displacement s be smaller than P.

Table 2 lists the characteristic displacements which enter into the restrictions (2.11)
and (2.12). The values ofS listed are standard deviations computed from observed K'S

according to (2.5g). Since Kyysometimes goes through a temporary maximum before
reaching its asymptotic limit at time T, both asymptotic values of (.1'2) 1/2 and maximum
values are given. Also listed are typical values of the unpredictable displacement XT

over the time lag T which enters (2.11). These are root-mean-square values computed
from the observed mean square of the total displacement s( t - T Ix, t) and the variance
oB.

In all but two cases, the RMS X values are essentially standard deviations because
the mean displacements are negligible. In the WALL boundary layer there is a mean
drift of particles toward the wall and this contributes significantly to (X2). Note that
s(t - Tlx, t) is the displacement before arriving at x; the mean displacement of
particles deployed at x is away from the wall. In SHR 0.16 < y < 0.25, near the
maximum of U, the mean particle velocity is less than U but still large enough to
contribute significantly to (X;). The mean particle velocity is less than U because most
particles arriving at a point in the y range have spent part of their recent history in
regions of smaller U.

In all cases the unpredictable displacement s is much smaller than the unpredictable
displacement XT' Consequently, meeting requirement (x; )1/2 « P of (2.11 b) will
insure meeting (S2) 1/2 « LQ + (X;) 1/2 of (2.11a) so long as LQ is not much smaller than
P.At the same time, the requirement (X; )1/2« LX of the scale separation development
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Figure 7. Examples of sample histograms of turbulent velocity (solid) (dashed) compared with
Gaussian probability densities computed from the sample mean and variance. The upper
panel is v' from 0.19 < y < 0.25 of SHR. The lower panel is v' from 0.12 < y < 0.25 of WALL.
These examples were selected as the poorest comparisons with Gaussian distributions and are
therefore worst case tests of restriction (2.12a).

is much more stringent than the restriction (5'2) 1/2« LX placed on the quasi-Gaussian u'
derivation.

Figure 7 shows two examples of sample histograms of u' from which the quasi-
Gaussian uf requirement can be evaluated. These examples were selected from the
many histograms computed for various experiments as showing the largest departures
from a Gaussian distribution. The departures are still small and the normalized higher
cumulants are negligible within sampling error. At least in these experiments, the
probability density functions of turbulent velocity fluctuations are sufficiently close to
normal distributions to meet requirement (2.12a).

In the homogeneous experimentsfP and {3Pthe conditions on LX are automatically
satisfied and the velocity histograms are even closer to Gaussian than those shown in
Figure 7. Thus the quasi-Gaussian derivation should be valid. The scale separation
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development is valid infP so long as LQ» 0.007, which is not very restrictive. Validity
of this development for ~P rests on L~» 0.005 and L~» 0.7; the latter of these is fairly
stringent. Validity of the scale separation derivation is, however, academic since the
quasi-Gaussian u' development is valid.

In the interior of the WALL flow, spatial derivatives of particle statistics are
difficult to detect so LX is at least 0(1). This is much larger than S~AX = 0.05 which,
coupled with a closely Gaussian distribution of u', means that the quasi-Gaussian u'
model is valid. LX is also somewhat larger than the y component of XT = 0.25, so the
scale separation derivation may be valid so long as L~ is much larger than 0.4, which is
again quite stringent.

In the WALL boundary layer L~ = 0(0.05). This is substantially larger than the
asymptotic s' and of the same order as its maximum; as long as the effects of the
transient maximum are not se"riousthe quasi-Guassian u' model should be acceptable.
On the other hand, the y component of XT is much larger than L~ and the scale
separation derivation is invalid.

The inhomogeneity scale in SHR is L~ = 1/2'1r. Again this is not smaller than the y
component of XT so the scale separation derivation of (2.10) is invalid. On the other
hand, u' is reasonably Gaussian and s, = 0.05 at least marginally meets (2.12b) so that
the quasi-Gaussian u' model should be reasonably accurate.

d. Conclusions. Analysis of particle motion in simulated geophysical turbulence leads
to three conclusions. First, the variations of single-particle diffusivity between different
flowregimes are large and difficult to predict from simple scaling arguments. Second,
derivations of diffusive flux laws from scale separation assumptions alone appear
applicable only to a restrictive class of flows. Third, the requirements of the
quasi-Gaussian u' derivation of the elaborated advection-diffusion model (2.10) seem
to be met for a broad range of flows.

I have been unable to rationalize the large variations of K in the experiments
described above using any simple scaling laws. It must be expected that dynamicists
will continue to use such scale arguments to measure the importance of eddy fluxes
relative to advection, but I believe such estimates will generally be in error by an order
of magnitude or two. One must .even be cautious about the applicability of numerical
simulations for determining K. For example, the suppression of Ky, by ~ in ~P
presumably occurs because particles cannot change their y position much without
accumulating unacceptable relative vorticity. Thus to provide accurate particle motion
statistics models must, firstly, conserve vorticity along trajectories very much as the
ocean does and, secondly, allow accurate determination of the trajectories along which
vorticity is so conserved. In limited resolution models employing artificial enstrophy
absorbing viscosities (such as the model employed here) it is unclear how well this can
be done.

It is perhaps surprising that scale separation derivation of the advection-diffusion
model has such limited validity. This is particularly so because the restrictions on the
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development of Section 2c, which uses the statistical trajectory prediction model, are
much less severe than those placed on the conventional heuristic development (cf the
Appendix). Nevertheless, the requirements on the scale separation development are
not met in many inhomogeneous flows and place severe restrictions on the scale of e in
some homogeneous flows.

Fortunately, mean transport can be modelled without resolving all scales of motion
when the requirements of the quasi-Gaussian u' model are met, and they are met in all
cases studied here. This is, of course, not a demonstration that all geophysical
turbulence produces Gaussian u' fluctuations. The flows examined here are relatively
heavily damped and forced by Gaussian random torques; this may not be representa-
tive of oceanic mesoscale turbulence. Clearly the kind of submesoscale coherent
vorticies discussed by McWilliams (1985) are not Gaussian perturbations in detail;
they may represent small perturbations to the distribution of velocity but certainly not
to vorticity. It is important to note, with regard to this model, that the requirement of
quasi-Gaussian u' is much less severe than the assumptions used to develop quasi-
Gaussian closures of the full momentum or scalar transport equations. In the latter, the
joint probability densities of u' and 0, or u' at two or more locations, are related to
joint-normal distributions. Here only the probability density of u' at a single location
need have an approximately Gaussian shape.

4. Conclusions

The principal results of this paper are the derivations of the mean transport
equation

a,0(x, t) + U(x) • \70(x, t) - Q(x, t)

I,~aK(X, t - i) { ~ }
= \7 . K(X, t) . \70(x, t) + \7 . dt ~ . \7 8(x, t) - 0(x, t)

o at

I,~aK(X. i) ~
- \7. 0 dt ai \70(x, t - t) (4.1)

for passive 8-stuff and the examination of the validity of the derivations in simulated
geophysical turbulence. The requirements for the quasi-Gaussian u' development were
met in all cases tested but the derivation based solely on scale separation arguments
was valid only in essentially homogeneous flows. The diffusivity in (4.1) is an
observable transport parameter (as opposed to a phenomenological one) which is a
function of position and time lag:

(4.2)

This mixed Eulerian-Lagrangian statistic is the covariance of the velocity deviation
from the Eulerian mean at x and the displacement over time lag t that particles
undergo at arriving at x.
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From the theoretical perspective these results have several implications. Perhaps
most important is the conclusion that the concept of eddy diffusion can be rationalized
with physically simple and testable approximations of particle trajectory statistics
without introducing phenomenological parameters. Although not the first development
of an eddy diffusion model, I believe the present one is logically straightforward and
yet involvesonly requirements which are widely applicable. The derivations are unique
in starting with the exact formal solution of the Lagrangian form of the transport
equations. The average of this solution is then simplified using a statistically optimized
model predicting a particle's trajectory from a few observable variables (position and a
single velocity). One might hope that this approach can be applied to other, more
difficult, transport problems such as the eddy fluxes of dynamically active quantities
like density and potential vorticity.

Recent theoretical work by-Rhines and Young (1982) and by Luyten et al. (1983)
have emphasized the importance of lateral transport of potential vorticity and the
relative strength of its advective and eddy fluxes. Unfortunately, the present study does
not address the question of how well eddy transport of potential vorticity can be
modelled as diffusion. Rhines and Holland (1979) outline an approach toward such
modelling and present examples of its consequences for ocean circulation. It would
seem of the highest priority to extend this approach to a tested model of eddy transport
of dynamically active tracers in general, and potential vorticity in particular.

The eddy transport model (4.1) is not a pure advection-diffusion equation. The eddy
flux law (2.7) upon which it is based includes an effect of the recent history of the 0
gradient. This is a consequence of the finite scale of the dispersing eddies and
represents the difference between dispersion by molecules, with their essentially
infinitesimal scales, and by eddies. In the present model the driving potential for the
eddy flux at time t is the sum of prior mean field gradients at time t - i weighted by the
time change of the diffusivity K at time lag i. If time variations of K are limited to a time
range less than T then only the history of V0 over t - T < i < t affects the flux at time t.
If T is small compared with the characteristic time over which 0 varies then a pure eddy
diffusion model with the large time asymptotic diffusivity K~ obtains.

Because of the long use of models based on pure eddy diffusion, it is important to
define the influence of this history correction in the evolution of 0 fields. A pure
advection-diffusion equation naturally introduces a single dimensionless scaling
parameter, the Peclet number Pe = UcLcIK, where Uc and Lc are a characteristic
velocity and length. Pe measures the relative importance of advection and diffusion.
The history correction in (4.1) depends on the history over the interval T, the time over
which the diffusivity approaches its asymptote, and this introduces a second parameter
Hi = TITc where Tc is the time scale on which e varies. Hi measures the relative
importance of the history correction in the total eddy flux. In the limit Hi -+ 0 the
effect of finite eddy scales vanishes and a pure advection-diffusion equation is
recovered. Specifically, in a steady state (4.1) reduces to pure advection-diffusion.
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(4.3)

The history correction is particularly simple when variation of K takes the form

K{X,t) = K~{x)[l - exp( -ttr)].

In this case, straightforward manipulation of (4.1) yields

[T :t + l][:t e + U· \78 - Q] - \7. K~· \78.
The effect of finite eddy scales, and the consequent time variations of K, is to raise the
order of the transport equation in t. The additional initial condition

a
-8 = 0 at t = 0
iJt

follows directly from (4.1).
The effect of the history correction is easy to see in a one-dimensional zero-source

constant-diffusivity initial value problem when (4.3) is easily solved by decomposing e
into Fourier components of the form a(k, t) exp (iky). Figure 8 presents the evolution
of e from the initial condition 8(x, 0) = exp ( - y2 /2LC> for two values of K~T/ L:. The
character of evolution depends strongly on this parameter because Fourier components
with k2 « T / K~ behave quite differently from those with k2 » T / K~.

y

o
Figure 8. Profiles of 8(y, t) for the elaborated diffusion equation (4.2) for different equilibra-

tion times r. Curves are e vs. y at various values of t - tK~/ L~ where Lc is the scale of the initial
Gaussian disturbance. For graphical clarity profiles are normalized by (L~ + 2K~t)I/2. The
curves correspond to K~r/L~ = 0.1 (solid), 1.0 (dashed) and 4.0 (dotted). The curve for the
smallest r is indistinguishable from pure diffusion. For larger r the effect of the finite
propagation speed C - (K~ /r)I/2 is evident.
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For small k the basic e time scale is I / k'-K~,just as in a pure diffusion problem. In
this case the extra time derivative in (4.3) is important only during an initial transient
during which e changes little. For K~r / L; « I the initial field is composed entirely of
components with k2 « r / K~ and evolution of e is essentially as it is in pure diffusion.

For k2 » r/ K~ a Fourier component evolves as

t .
a(k, 0) exp - 2r + lk(y - Ct) where C = (K~/r)I/2,

that is as a damped nondispersive wave. This behavior is quite different from a pure
diffusion equation as the solution for large K~r / L; in Figure 8 shows. It is interesting
that in (4.3), unlike a pure diffusion model, the disturbance from an initial delta
function does not propagate with infinite speed but rather at the speed (K~ /r)I/2 which
is of the same order as the eddy' velocities; this finite propagation speed effect is evident
in Figure 8.

o

o 25
Figure 9. The instantaneous mean eddy flux of 8-stuff (solid) and -K~al~(dashed) for the

elaborated diffusion equation (4.2). The upper three time series are values at y = 4 and the
lower three are at y = 2. The time axis is t = tK~ IL~ where Lc is the initial Gaussian
disturbance's scale. At each y curves are shown for three values of K - K~T IL~. For graphical
purposes each curve has been multiplied by L~ + 2K~t. Note that only for small K or large t do
the instantaneous flux and the scaled gradient coincide.
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Available results for lateral dispersion in the ocean (cf Freeland et al. (1975) and
Price (1983» indicate K~ = 0(103 m2js) and T = 0(10 days). Although these sizes,
largely based on assuming low frequency variations result from the mean flow, may
underestimate K~ and T, they indicate that mean lateral dispersion of features with Lc>
30 km is well modelled by pure advection-diffusion. Only for fields in which time
changes following a mean particle path occur on time scales of the order 10 days would
the history correction to pure advection-diffusion be important.

From the observational perspective the results here have additional implications.
Because the diffusivity in the transport model is defined in terms of statistics of particle
trajectories it is, in principle, observable. At least for lateral transport it is possible that
the transport parameters U, K and T can be determined from the statistics of
pseudo-Lagrangian drifter and float trajectories. To do this it is first necessary to
demonstrate that the differences between floats and ideal continuum flowparticles are
small enough that particle and float statistics are similar. It is not, however, necessary
that floats follow ideal particles on a realization by realization basis; only statistical
similarity is required. Secondly, it is necessary that repeated observations be taken in
the same locality so that the mean flow can accurately be determined. To infer mean
flow from the low frequency component of a single float's velocity is to assert, rather
than determine, that low frequency eddy motion is not important to eddy transport. It
is also important that float trajectory analyses determine the time scale T over which
the diffusivity approaches its asymptotic value.

Finally it must be noted that, to the extent that the eddy flux depends on the history
of the mean field gradient, the diffusivity can not be determined from the ratio of the
eddy flux and the instantaneous mean gradient. Figure 9 presents time series of the
gradient aye and the eddy flux for the examples shown in Figure 8. Clearly, when
K~T j L~ is not small there are large fluctuations in the ratio of instantaneous flux and
mean gradient.
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APPENDIX
The heuristic advection-diffusion model

The use of an advection-diffusion model for mean transport is frequently justified by
a heuristic analogy to molecular transport with the justification that eddy time and
space scales are small compared with the scales of the mean velocity and concentration
fields. The purpose of this Appendix is to show how conventional scale separation
arguments reduce (2.2) to an advection-diffusion model but that the range of validity is
much more restrictive than for the transport models of Section 2.

a. Development. The crucial step in the conventional development of an advection-
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diffusion model for 0 is the assumption that transport is, over some time step .6., a
Markov process in the sense that particle motion over that time step depends
statistically only on particle positions at its start. If a particle's motion for t > tl + .6.is
statistically independent of its history before time tl then the history integral in (2.2)
can be broken into time steps of.6. and an evolution equation developed. More precisely,
if the transition probability of a particle going from i at i to XI at i + .6.to X at t is the
product of the probabilities for the individual transitions then

C(x, t + .6. - i, i) = J dXI C(x,.6., XI) . C(XI, t - i, i). (A.I)

From (A. I ) one can construct C(x, n~, i) as the n-fold convolution of C(x, ~, i). This
leads directly to the local-in-time evolution equation

where

0(x, t + .6.) = J di C(x, .6.,i)8(i, t) + .6.Q(x, t)

- I J'+4 -J - -Q(x, t) = Li 1 dt di C(x, t - t, x)Q(i, t).

(A.2)

(A.3)

If the scales of e and Q are large compared to particle displacements over the
interval.6., a Taylor series expansion of 0(i) and Q(i) about i - i in (A.2) and (A.3)
yields the local-in-space model

0(x, t + .6.) - 0(x, t) a e( )
.6. + J;;' aX

n
X, t

a a 111+4 - -- -a ,,_(x,.6.) -a 0(x, t) + A dt Q(x, t), (A.4)
Xn Xm L.1 1

where

s(.6.lx) = X - r( -.6.1 x, 0)

is the displacement from time -.6. to time 0 that a particle undergoes in arriving at x,

( ) (si.6.lx)sm (.6.lx»
"- x,.6. = 2.6.

is the apparent diffusivity involving the mean product of particle displacements over
interval ~,

.6.V(.6.lx) = J di(x - i) . C(i,.6., x) = (s(.6.lx»

is the mean displacement over the interval .6.of those particles arriving at x, and
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is the advection velocity. Clearly (A.4) is a finite time-step analog of the advection-
diffusion model.

There are two interesting points about the advection velocity V. First, the mean
particle velocity V differs from the advection velocity V by a bias which is directed
away from regions of high diffusivity. This is opposite to the mean drift toward high
diffusivity of particles released at a point. The difference arises because we are here
interested in the displacement s particles undergo in arriving at a point and (cf Davis,
1983) this displacement is biased away from high v just as displacements from that
point are biased toward high P. Secondly, in the absence of p variation the advection
velocity in (A.4) is the Lagrangian mean velocity V not the Eulerian mean velocity
U = < u) normally appearing in advection-diffusion models; when the velocity field u is
nondivergent, as considered here, this difference vanishes.

b. Discussion. The development above parallels that followed for other Fokker-Planck
equations (cf Chandrasekhar, 1943) except that the time step A is necessarily finite.
The principal elements leading to the advection-diffusion model are the assertion of a
Markov evolution over the time interval A (hence A must be large) and the Taylor
series expansion of 9 in powers of s, the displacement over that time. The minimum
size of A (and hence of the displacement s over that time) for which the Markov
assumption is valid is critical to the accuracy of the spatial Taylor series by which
(A.2) and (A.3) are converted to the spatially local (A.4).

What determines the minimum useable A? We know from the work of Taylor
(1921) that when V vanishes and the flow is statistically stationary in x and t then the
single particle diffusivity is

where

is the Lagrangian covariance of particle velocity. As t -- 00 the diffusivity K approaches
a constant K~ and

where the t"", are constants of the order T, the time scale of the Lagrangian covariance
L.

In this homogeneous and stationary case A must be much larger than the time scale T

over which L(t) goes to zero. To see this, we note that the advection-diffusion model
predicts the area

A(t) = J dxlxI29(x, t)
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to vary as
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A(t + ~) - A(t) - (S2(~»

if f dx e - 1. Thus a model employing ~ = TI2 will predict A(T) - 2 (s2(TI2»
whereas ~ - Twill predict (s2(1). Because (S2) is not simply proportional to time,
the fractional difference between these is O(T/~); thus accuracy of the local-in-time
models (A.2) and (A.3) require ~ » T. The requirement ~ » T coupled with the
restriction that the typical displacement Is(~ Ix) Ibe much smaller than the scales of Q
and e presents a stringent limitation on the applicability of this development. In
particular the requirement is more restrictive than that in the scale separation
development of Section 2.c by the order ~/T which must be large. The results of
Section 3 suggest that, in general, T is substantially longer than an eddy turnover
time.

The conventional scale separation development is even less satisfactory when there is
statistical inhomogeneity and mean shear. The minimum ~ is more difficult to
determine when the flow is statistically inhomogeneous because particle velocity
statistics are generally not stationary and the arguments above do not pertain; it can
only be conjectured that a ~ much greater than the velocity decorrelation scale will be
adequate. Further, the requirement that displacements be small compared with the
scales of Q and e is much more stringent when there is a mean shear because the
displacement s includes displacement by the mean flow and its mean square, therefore,
grows more rapidly.
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