3,284 research outputs found

    The life project

    Get PDF
    This conference paper is available to download from the publisher’s website at the link below.The Life Project explores issues of psychological projection into technology by diving into the convoluted relationship between practical purpose and emotional attachment, through both the creative act of designing and making robot entities with artificial emotions, and the social act of engaging with them. This process explores the concept of body representation through a multiidentity in virtual and physical blended space. In a lesser sense, it also suggests a future world of collaboration between physical and virtual forms, enabled by new forms of representation in blended worlds

    Body-fitted harness provides safe and easy component handling

    Get PDF
    Body-fitted restraint harness enables workers to safely and conveniently handle critical components during their installation or removal. Since the harness supports the components, the worker is able to maneuver through restricted areas with his hands free. It is easily put on, adjusted, and removed, or comfortably worn without interfering with normal activities

    The CDVPlex biometric cinema: sensing physiological responses to emotional stimuli in film

    Get PDF
    We describe a study conducted to investigate the potential correlations between human subject responses to emotional stimuli in movies, and observed biometric responses. The experimental set-up and procedure are described, including details of the range of sensors used to detect and record observed physiological data (such as heart-rate, galvanic skin response, body temperature and movement). Finally, applications and future analysis of the results of the study are discussed

    Priming Pharyngeal Motor Cortex by Repeated Paired Associative Stimulation: Implications for Dysphagia Neurorehabilitation

    Get PDF
    Background. Several stimulation parameters can influence the neurophysiological and behavioral effects of paired associative stimulation (PAS), a neurostimulation paradigm that repeatedly pairs a peripheral electrical with a central cortical (transcranial magnetic stimulation [TMS]) stimulus. This also appears to be the case when PAS is applied to the pharyngeal motor cortex (MI), with some variability in excitatory responses, questioning its translation into a useful therapy for patients with brain injury. Objective. To investigate whether repeated PAS in both “responders” and “nonresponders” could enhance cortical excitability in pharyngeal MI more robustly. Methods. Based on their responses after single PAS, healthy participants were stratified into 2 groups of “responders” and “nonresponders” and underwent 2 periods (60 minutes inter-PAS interval) of active and sham PAS in a randomized order. Neurophysiological measurements with single TMS pulses from pharyngeal motor representation were collected up to 90 minutes after the second PAS period. Results. Repeated PAS increased cortical excitability up to 95% at 60 minutes following the second PAS in both the “responders” and “nonresponders.” Moreover, cortical excitability in the “nonresponders” was significantly different after repeated PAS compared with single and sham application (P = .02; z = −2.2). Conclusions. Double dose PAS switched “nonresponders” to “responders.” These results are important for PAS application to dysphagic stroke patients who do not initially respond to a single application

    Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation

    Get PDF
    Background: it is well-known that the cerebellum is critical for the integrity of motor and cognitive actions. Applying non-invasive brain stimulation techniques over this region results in neurophysiological and behavioural changes, which have been associated with the modulation of cerebellar-cerebral cortex connectivity. Here, we investigated whether online application of cerebellar transcranial alternating current stimulation (tACS) results in changes to this pathway. Methods: thirteen healthy individuals participated in two sessions of cerebellar tACS delivered at different frequencies (5Hz and 50Hz). We used transcranial magnetic stimulation to measure cerebellar-motor cortex (M1) inhibition (CBI), short-intracortical inhibition (SICI) and short-afferent inhibition (SAI) before, during and after the application of tACS. Results: we found that CBI was specifically strengthened during the application of 5Hz cerebellar tACS. No changes were detected immediately following the application of 5Hz stimulation, nor at any time point with 50Hz stimulation. We also found no changes to M1 intracortical circuits (i.e. SICI) or sensorimotor interaction (i.e. SAI), indicating that the effects of 5Hz tACS over the cerebellum are site-specific. Conclusions: cerebellar tACS can modulate cerebellar excitability in a time- and frequency-dependent manner. Additionally, cerebellar tACS does not appear to induce any long-lasting effects (i.e. plasticity), suggesting that stimulation enhances oscillations within the cerebellum only throughout the stimulation period. As such, cerebellar tACS may have significant implications for diseases manifesting with abnormal cerebellar oscillatory activity and also for future behavioural studies

    Searching for "monogenic diabetes" in dogs using a candidate gene approach

    Get PDF
    BACKGROUND: Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from mutations in a single gene, including maturity onset diabetes of the adult (MODY) and neonatal diabetes mellitus (NDM). It is not clear whether monogenic forms of diabetes exist within some dog breeds. Identification of forms of canine monogenic diabetes could help to resolve the heterogeneity of the condition and lead to development of breed-specific genetic tests for diabetes susceptibility. RESULTS: Seventeen dog breeds were screened for single nucleotide polymorphisms (SNPs) in eighteen genes that have been associated with human MODY/NDM. Six SNP associations were found from five genes, with one gene (ZFP57) being associated in two different breeds. CONCLUSIONS: Some of the genes that have been associated with susceptibility to MODY and NDM in humans appear to also be associated with canine diabetes, although the limited number of associations identified in this study indicates canine diabetes is a heterogeneous condition and is most likely to be a polygenic trait in most dog breeds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2052-6687-1-8) contains supplementary material, which is available to authorized users

    The Unusual Linear Plasmid Generating Systems of Prokaryotes

    Get PDF
    Linear DNA is vulnerable to exonuclease degradation and suffers from genetic loss due to the end replication problem. Eukaryotes overcome these problems by locating repetitive telomere sequences at the end of each chromosome. In humans and other vertebrates this noncoding terminal sequence is repeated between hundreds and thousands of times, ensuring important genetic information is protected. In most prokaryotes, the end-replication problem is solved by utilizing circular DNA molecules as chromosomes. However, some phage and bacteria do store genetic information in linear constructs, and the ends of these structures form either invertrons or hairpin telomeres. Hairpin telomere formation is catalyzed by a protelomerase, a unique protein that modifies DNA by a two-step transesterification reaction, proceeding via a covalent protein bound intermediate. The specifics of this mechanism are largely unknown and conflicting data suggests variations occur between different systems. These proteins, and the DNA constructs they produce, have valuable applications in the biotechnology industry. They are also an essential component of some human pathogens, an increased understanding of how they operate is therefore of fundamental importance. Although this review will focus on phage encoded protelomerase, protelomerases found from Agrobacterium and Borellia will be discussed in terms of mechanism of action
    corecore