20 research outputs found

    A Novel, Low-Volume Method for Organ Culture of Embryonic Kidneys That Allows Development of Cortico-Medullary Anatomical Organization

    Get PDF
    Here, we present a novel method for culturing kidneys in low volumes of medium that offers more organotypic development compared to conventional methods. Organ culture is a powerful technique for studying renal development. It recapitulates many aspects of early development very well, but the established techniques have some disadvantages: in particular, they require relatively large volumes (1–3 mls) of culture medium, which can make high-throughput screens expensive, they require porous (filter) substrates which are difficult to modify chemically, and the organs produced do not achieve good cortico-medullary zonation. Here, we present a technique of growing kidney rudiments in very low volumes of medium–around 85 microliters–using silicone chambers. In this system, kidneys grow directly on glass, grow larger than in conventional culture and develop a clear anatomical cortico-medullary zonation with extended loops of Henle

    Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys

    Get PDF
    Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys

    The instructive role of metanephric mesenchyme in ureteric bud patterning, sculpting, and maturation and its potential ability to buffer ureteric bud branching defects

    No full text
    Kidney organogenesis depends on reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM) to form the UB-derived collecting system and MM-derived nephron. With the advent of in vitro systems, it is clear that UB branching can occur independently of MM contact; however, little has been done to detail the role of MM cellular contact in this process. Here, a model system in which the cultured isolated UB is recombined with uninduced MM is used to isolate the effects of the MM progenitor tissue on the development and maturation of the collecting system. By morphometrics, we demonstrate that cellular contact with the MM is required for vectorial elongation of stalks and tapering of luminal caliber of UB-derived tubules. Expression analysis of developmentally significant genes indicates the cocultured tissue is most similar to an embryonic day 19 (E19) kidney. The likely major contributor to this is the functional maturation of the collecting duct and proximal nephron segments in the UB-induced MM, as measured by quantitative PCR, of the collecting duct-specific arginine vasopressin receptor and the nephron tubule segment-specific organic anion transporter OAT1, Na-Pi type 2 cotransporter, and Tamm-Horsfall protein gene expressions. However, expression of aquaporin-2 is upregulated similarly in isolated UB and cocultured tissue, suggesting that some aspects of functional maturation can occur independently of MM cellular contact. In addition to its sculpting effects, the MM normalized a “branchless” UB morphology induced by FGF7 or heregulin in isolated UB culture. The morphological changes induced by the MM were accompanied by a reassignment of GFRα1 (a receptor for GDNF) to tips. Such “quality control” by the MM of UB morphology may provide resiliency to the branching program. This may help to explain a number of knockout phenotypes in which branching and/or cystic defects are less impressive than expected. A second hit in the MM may thus be necessary to make these defects fully apparent
    corecore