2,277 research outputs found

    Two stories outside Boltzmann-Gibbs statistics: Mori's q-phase transitions and glassy dynamics at the onset of chaos

    Full text link
    First, we analyze trajectories inside the Feigenbaum attractor and obtain the atypical weak sensitivity to initial conditions and loss of information associated to their dynamics. We identify the Mori singularities in its Lyapunov spectrum with the appearance of a special value for the entropic index q of the Tsallis statistics. Secondly, the dynamics of iterates at the noise-perturbed transition to chaos is shown to exhibit the characteristic elements of the glass transition, e.g. two-step relaxation, aging, subdiffusion and arrest. The properties of the bifurcation gap induced by the noise are seen to be comparable to those of a supercooled liquid above a glass transition temperature.Comment: Proceedings of: 31st Workshop of the International School of Solid State Physics, Complexity, Metastability and Nonextensivity, Erice (Sicily) 20-26 July 2004 World Scientific in the special series of the E. Majorana conferences, in pres

    M\"obius transformations and electronic transport properties of large disorderless networks

    Full text link
    We show that the key transport states, insulating and conducting, of large regular networks of scatterers can be described generically by negative and zero Lyapunov exponents, respectively, of M\"obius maps that relate the scattering matrix of systems with successive sizes. The conductive phase is represented by weakly chaotic attractors that have been linked with anomalous transport and ergodicity breaking. Our conclusions, verified for serial as well as parallel stub and ring structures, reveal that mesoscopic behavior results from a drastic reduction of degrees of freedom.Comment: latex, 5 figs, more specific title, abstract, and introduction, some sentences removed, references changed and adde

    Rheology of a sonofluidized granular packing

    Full text link
    We report experimental measurements on the rheology of a dry granular material under a weak level of vibration generated by sound injection. First, we measure the drag force exerted on a wire moving in the bulk. We show that when the driving vibration energy is increased, the effective rheology changes drastically: going from a non-linear dynamical friction behavior - weakly increasing with the velocity- up to a linear force-velocity regime. We present a simple heuristic model to account for the vanishing of the stress dynamical threshold at a finite vibration intensity and the onset of a linear force-velocity behavior. Second, we measure the drag force on spherical intruders when the dragging velocity, the vibration energy, and the diameters are varied. We evidence a so-called ''geometrical hardening'' effect for smaller size intruders and a logarithmic hardening effect for the velocity dependence. We show that this last effect is only weakly dependent on the vibration intensity.Comment: Accepted to be published in EPJE. v3: Includes changes suggested by referee

    Tsallis' q index and Mori's q phase transitions at edge of chaos

    Full text link
    We uncover the basis for the validity of the Tsallis statistics at the onset of chaos in logistic maps. The dynamics within the critical attractor is found to consist of an infinite family of Mori's qq-phase transitions of rapidly decreasing strength, each associated to a discontinuity in Feigenbaum's trajectory scaling function σ\sigma . The value of qq at each transition corresponds to the same special value for the entropic index qq, such that the resultant sets of qq-Lyapunov coefficients are equal to the Tsallis rates of entropy evolution.Comment: Significantly enlarged version, additional figures and references. To be published in Physical Review

    Control and coherence of the optical transition of single defect centers in diamond

    Full text link
    We demonstrate coherent control of the optical transition of single Nitrogen-Vacancy defect centers in diamond. On applying short resonant laser pulses, we observe optical Rabi oscillations with a half-period as short as 1 nanosecond, an order of magnitude shorter than the spontaneous emission time. By studying the decay of Rabi oscillations, we find that the decoherence is dominated by laser-induced spectral jumps. By using a low-power probe pulse as a detuning sensor and applying post-selection, we demonstrate that spectral diffusion can be overcome in this system to generate coherent photons.Comment: 5 pages,4 figure

    Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: rigorous nonextensive solutions

    Full text link
    Using the Feigenbaum renormalization group (RG) transformation we work out exactly the dynamics and the sensitivity to initial conditions for unimodal maps of nonlinearity ζ>1\zeta >1 at both their pitchfork and tangent bifurcations. These functions have the form of qq-exponentials as proposed in Tsallis' generalization of statistical mechanics. We determine the qq-indices that characterize these universality classes and perform for the first time the calculation of the qq-generalized Lyapunov coefficient λq\lambda_{q} . The pitchfork and the left-hand side of the tangent bifurcations display weak insensitivity to initial conditions, while the right-hand side of the tangent bifurcations presents a `super-strong' (faster than exponential) sensitivity to initial conditions. We corroborate our analytical results with {\em a priori} numerical calculations.Comment: latex, 4 figures. Updated references and some general presentation improvements. To appear published in Europhysics Letter

    Backbending in 50Cr

    Get PDF
    The collective yrast band and the high spin states of the nucleus 50Cr are studied using the spherical shell model and the HFB method. The two descriptions lead to nearly the same values for the relevant observables. A first backbending is predicted at I=10\hbar corresponding to a collective to non-collective transition. At I=16\hbar a second backbending occurs, associated to a configuration change that can also be interpreted as an spherical to triaxial transition.Comment: ReVTeX v 3.0 epsf.sty, 5 pages, 5 figures included. Full Postscript version available at http://www.ft.uam.es/~gabriel/Cr50art.ps.g

    Intermittency at critical transitions and aging dynamics at edge of chaos

    Full text link
    We recall that, at both the intermittency transitions and at the Feigenbaum attractor in unimodal maps of non-linearity of order ζ>1\zeta >1, the dynamics rigorously obeys the Tsallis statistics. We account for the qq-indices and the generalized Lyapunov coefficients λq\lambda_{q} that characterize the universality classes of the pitchfork and tangent bifurcations. We identify the Mori singularities in the Lyapunov spectrum at the edge of chaos with the appearance of a special value for the entropic index qq. The physical area of the Tsallis statistics is further probed by considering the dynamics near criticality and glass formation in thermal systems. In both cases a close connection is made with states in unimodal maps with vanishing Lyapunov coefficients.Comment: Proceedings of: STATPHYS 2004 - 22nd IUPAP International Conference on Statistical Physics, National Science Seminar Complex, Indian Institute of Science, Bangalore, 4-9 July 2004. Pramana, in pres

    Shape evolution and shape coexistence in Pt isotopes: comparing interacting boson model configuration mixing and Gogny mean-field energy surfaces

    Get PDF
    The evolution of the total energy surface and the nuclear shape in the isotopic chain 172194^{172-194}Pt are studied in the framework of the interacting boson model, including configuration mixing. The results are compared with a self-consistent Hartree-Fock-Bogoliubov calculation using the Gogny-D1S interaction and a good agreement between both approaches shows up. The evolution of the deformation parameters points towards the presence of two different coexisting configurations in the region 176 \leq A \leq 186.Comment: Submitted to PR
    corecore