1,027 research outputs found
A Survey of Potential Problems Related to Toxic Organic Chemical Contamination of Aquatic Environments
Toxic organic chemicals have affected aquatic resources by (1) restricting harvest; (2) causing biological damage to harvestable stocks; and (3) damaging other biological resources eg. benthic animals and birds.
Areas under review:
Puget Sound, Oregon Bays, San Francisco Bay, Southern California, Louisiana, Mississippi Sound and Mobile Bay, Texas Bays, Chesapeake Bay and Tributaries, Delaware Bay, New York Harbor, Hudson R~ ver - Raritan Bay Estuary, Narragansett Bay, the Great Lakes. Annotated bibliographies included with each sector
Proper time and Minkowski structure on causal graphs
For causal graphs we propose a definition of proper time which for small
scales is based on the concept of volume, while for large scales the usual
definition of length is applied. The scale where the change from "volume" to
"length" occurs is related to the size of a dynamical clock and defines a
natural cut-off for this type of clock. By changing the cut-off volume we may
probe the geometry of the causal graph on different scales and therey define a
continuum limit. This provides an alternative to the standard coarse graining
procedures. For regular causal lattice (like e.g. the 2-dim. light-cone
lattice) this concept can be proven to lead to a Minkowski structure. An
illustrative example of this approach is provided by the breather solutions of
the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure
Depth- and range-dependent variation in the performance of aquatic telemetry systems: Understanding and predicting the susceptibility of acoustic tag-receiver pairs to close proximity detection interference
BACKGROUND:
Passive acoustic telemetry using coded transmitter tags and stationary receivers is a popular method for tracking movements of aquatic animals. Understanding the performance of these systems is important in array design and in analysis. Close proximity detection interference (CPDI) is a condition where receivers fail to reliably detect tag transmissions. CPDI generally occurs when the tag and receiver are near one another in acoustically reverberant settings. Here we confirm transmission multipaths reflected off the environment arriving at a receiver with sufficient delay relative to the direct signal cause CPDI. We propose a ray-propagation based model to estimate the arrival of energy via multipaths to predict CPDI occurrence, and we show how deeper deployments are particularly susceptible. METHODS:
A series of experiments were designed to develop and validate our model. Deep (300 m) and shallow (25 m) ranging experiments were conducted using Vemco V13 acoustic tags and VR2-W receivers. Probabilistic modeling of hourly detections was used to estimate the average distance a tag could be detected. A mechanistic model for predicting the arrival time of multipaths was developed using parameters from these experiments to calculate the direct and multipath path lengths. This model was retroactively applied to the previous ranging experiments to validate CPDI observations. Two additional experiments were designed to validate predictions of CPDI with respect to combinations of deployment depth and distance. Playback of recorded tags in a tank environment was used to confirm multipaths arriving after the receiver\u27s blanking interval cause CPDI effects. RESULTS:
Analysis of empirical data estimated the average maximum detection radius (AMDR), the farthest distance at which 95% of tag transmissions went undetected by receivers, was between 840 and 846 m for the deep ranging experiment across all factor permutations. From these results, CPDI was estimated within a 276.5 m radius of the receiver. These empirical estimations were consistent with mechanistic model predictions. CPDI affected detection at distances closer than 259-326 m from receivers. AMDR determined from the shallow ranging experiment was between 278 and 290 m with CPDI neither predicted nor observed. Results of validation experiments were consistent with mechanistic model predictions. Finally, we were able to predict detection/nondetection with 95.7% accuracy using the mechanistic model\u27s criterion when simulating transmissions with and without multipaths. DISCUSSION:
Close proximity detection interference results from combinations of depth and distance that produce reflected signals arriving after a receiver\u27s blanking interval has ended. Deployment scenarios resulting in CPDI can be predicted with the proposed mechanistic model. For deeper deployments, sea-surface reflections can produce CPDI conditions, resulting in transmission rejection, regardless of the reflective properties of the seafloor
The structure of causal sets
More often than not, recently popular structuralist interpretations of
physical theories leave the central concept of a structure insufficiently
precisified. The incipient causal sets approach to quantum gravity offers a
paradigmatic case of a physical theory predestined to be interpreted in
structuralist terms. It is shown how employing structuralism lends itself to a
natural interpretation of the physical meaning of causal sets theory.
Conversely, the conceptually exceptionally clear case of causal sets is used as
a foil to illustrate how a mathematically informed rigorous conceptualization
of structure serves to identify structures in physical theories. Furthermore, a
number of technical issues infesting structuralist interpretations of physical
theories such as difficulties with grounding the identity of the places of
highly symmetrical physical structures in their relational profile and what may
resolve these difficulties can be vividly illustrated with causal sets.Comment: 19 pages, 4 figure
Shape in an Atom of Space: Exploring quantum geometry phenomenology
A phenomenology for the deep spatial geometry of loop quantum gravity is
introduced. In the context of a simple model, an atom of space, it is shown how
purely combinatorial structures can affect observations. The angle operator is
used to develop a model of angular corrections to local, continuum flat-space
3-geometries. The physical effects involve neither breaking of local Lorentz
invariance nor Planck scale suppression, but rather reply on only the
combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example
of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde
Emergence of spatial structure from causal sets
There are numerous indications that a discrete substratum underlies continuum
spacetime. Any fundamentally discrete approach to quantum gravity must provide
some prescription for how continuum properties emerge from the underlying
discreteness. The causal set approach, in which the fundamental relation is
based upon causality, finds it easy to reproduce timelike distances, but has a
more difficult time with spatial distance, due to the unique combination of
Lorentz invariance and discreteness within that approach. We describe a method
to deduce spatial distances from a causal set. In addition, we sketch how one
might use an important ingredient in deducing spatial distance, the `-link',
to deduce whether a given causal set is likely to faithfully embed into a
continuum spacetime.Comment: 21 pages, 21 figures; proceedings contribution for DICE 2008, to
appear in Journal of Physics: Conference Serie
Spacelike distance from discrete causal order
Any discrete approach to quantum gravity must provide some prescription as to
how to deduce continuum properties from the discrete substructure. In the
causal set approach it is straightforward to deduce timelike distances, but
surprisingly difficult to extract spacelike distances, because of the unique
combination of discreteness with local Lorentz invariance in that approach. We
propose a number of methods to overcome this difficulty, one of which
reproduces the spatial distance between two points in a finite region of
Minkowski space. We provide numerical evidence that this definition can be used
to define a `spatial nearest neighbor' relation on a causal set, and conjecture
that this can be exploited to define the length of `continuous curves' in
causal sets which are approximated by curved spacetime. This provides evidence
in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio
Stable Homology as an Indicator of Manifoldlikeness in Causal Set Theory
We present a computational tool that can be used to obtain the "spatial"
homology groups of a causal set. Localisation in the causal set is seeded by an
inextendible antichain, which is the analog of a spacelike hypersurface, and a
one parameter family of nerve simplicial complexes is constructed by
"thickening" this antichain. The associated homology groups can then be
calculated using existing homology software, and their behaviour studied as a
function of the thickening parameter. Earlier analytical work showed that for
an inextendible antichain in a causal set which can be approximated by a
globally hyperbolic spacetime region, there is a one parameter sub-family of
these simplicial complexes which are homological to the continuum, provided the
antichain satisfies certain conditions. Using causal sets that are approximated
by a set of 2d spacetimes our numerical analysis suggests that these conditions
are generically satisfied by inextendible antichains. In both 2d and 3d
simulations, as the thickening parameter is increased, the continuum homology
groups tend to appear as the first region in which the homology is constant, or
"stable" above the discreteness scale. Below this scale, the homology groups
fluctuate rapidly as a function of the thickening parameter. This provides a
necessary though not sufficient criterion to test for manifoldlikeness of a
causal set.Comment: Latex, 46 pages, 43 .eps figures, v2 numerous changes to content and
presentatio
Simulating causal collapse models
We present simulations of causal dynamical collapse models of field theories
on a 1+1 null lattice. We use our simulations to compare and contrast two
possible interpretations of the models, one in which the field values are real
and the other in which the state vector is real. We suggest that a procedure of
coarse graining and renormalising the fundamental field can overcome its
noisiness and argue that this coarse grained renormalised field will show
interesting structure if the state vector does on the coarse grained scale.Comment: 18 pages, 8 fugures, LaTeX, Reference added, discussion of
probability distribution of labellings correcte
Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation
The properties of the Volume operator in Loop Quantum Gravity, as constructed
by Ashtekar and Lewandowski, are analyzed for the first time at generic
vertices of valence greater than four. The present analysis benefits from the
general simplified formula for matrix elements of the Volume operator derived
in gr-qc/0405060, making it feasible to implement it on a computer as a matrix
which is then diagonalized numerically. The resulting eigenvalues serve as a
database to investigate the spectral properties of the volume operator.
Analytical results on the spectrum at 4-valent vertices are included. This is a
companion paper to arXiv:0706.0469, providing details of the analysis presented
there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008.
More compact presentation. Sign factor combinatorics now much better
understood in context of oriented matroids, see arXiv:1003.2348, where also
important remarks given regarding sigma configurations. Subsequent
computations revealed some minor errors, which do not change qualitative
results but modify some numbers presented her
- …