300 research outputs found

    3D hindlimb joint mobility of the stem-archosaur Euparkeria capensis with implications for postural evolution within Archosauria.

    Get PDF
    Triassic archosaurs and stem-archosaurs show a remarkable disparity in their ankle and pelvis morphologies. However, the implications of these different morphologies for specific functions are still poorly understood. Here, we present the first quantitative analysis into the locomotor abilities of a stem-archosaur applying 3D modelling techniques. μCT scans of multiple specimens of Euparkeria capensis enabled the reconstruction and three-dimensional articulation of the hindlimb. The joint mobility of the hindlimb was quantified in 3D to address previous qualitative hypotheses regarding the stance of Euparkeria. Our range of motion analysis implies the potential for an erect posture, consistent with the hip morphology, allowing the femur to be fully adducted to position the feet beneath the body. A fully sprawling pose appears unlikely but a wide range of hip abduction remained feasible-the hip appears quite mobile. The oblique mesotarsal ankle joint in Euparkeria implies, however, a more abducted hindlimb. This is consistent with a mosaic of ancestral and derived osteological characters in the hindlimb, and might suggest a moderately adducted posture for Euparkeria. Our results support a single origin of a pillar-erect hip morphology, ancestral to Eucrocopoda that preceded later development of a hinge-like ankle joint and a more erect hindlimb posture

    Osteology and digital reconstruction of the skull of the early tetrapod Whatcheeria deltae

    Get PDF
    The Early Carboniferous stem tetrapod Whatcheeria deltae is among the earliest-branching limbed tetrapods represented by multiple near-complete specimens, making it an important taxon in understanding the vertebrate water-to-land transition. However, all preserved skulls of Whatcheeria suffer from post-mortem crushing and lateral compression, which has made cranial reconstruction problematic. In this study, computed tomography data of three Whatcheeria specimens were segmented using visualization software to digitally separate each individual skull bone from matrix. Digital methods were used to repair and retrodeform the bones and produce the first complete three-dimensional skull reconstruction of Whatcheeria. We provide a revised description of the cranial and lower jaw anatomy of Whatcheeria based on CT data, focusing on sutural morphology and previously unknown anatomical details. Our findings suggest that Whatcheeria had one of the narrowest skulls of any known early tetrapod, a gap between the nasals, and significant overlap of the lacrimal onto the nasal and prefrontal. Sutural morphology is used to infer loading regime in the skull during feeding and suggests the skull of Whatcheeria was well adapted to resist stresses induced by biting large prey with its enlarged anterior fangs

    Combining geometric morphometrics and finite element analysis with evolutionary modeling:towards a synthesis

    Get PDF
    <p>Geometric morphometrics (GM) and finite element analysis (FEA) are increasingly common techniques for the study of form and function. We show how principles of quantitative evolution in continuous phenotypic traits can link the two techniques, allowing hypotheses about the relative importance of different functions to be tested in a phylogenetic and evolutionary framework. Finite element analysis is used to derive quantitative surfaces that describe the comparative performance of different morphologies in a morphospace derived from GM. The combination of two or more performance surfaces describes a quantitative adaptive landscape that can be used to predict the direction morphological evolution would take if a combination of functions was selected for. Predicted paths of evolution also can be derived for hypotheses about the relative importance of multiple functions, which can be tested against evolutionary pathways that are documented by phylogenies or fossil sequences. Magnitudes of evolutionary trade-offs between functions can be estimated using maximum likelihood. We apply these methods to an earlier study of carapace strength and hydrodynamic efficiency in emydid turtles. We find that strength and hydrodynamic efficiency explain about 45% of the variance in shell shape; drift and other unidentified functional factors are necessary to explain the remaining variance. Measurement of the proportional trade-off between shell strength and hydrodynamic efficiency shows that throughout the Cenozoic aquatic turtles generally sacrificed strength for streamlining and terrestrial species favored stronger shells; this suggests that the selective regime operating on small to mid-sized emydids has remained relatively static.</p> <p>SUPPLEMENTAL DATA—Supplemental materials are available for this article for free at <a href="http://www.tandfonline.com/UJVP" target="_blank">www.tandfonline.com/UJVP</a></p> <p>Citation for this article: Polly, P. D., C. T. Stayton, E. R. Dumont, S. E. Pierce, E. J. Rayfield, and K. D. Angielczyk. 2016. Combining geometric morphometrics and finite element analysis with evolutionary modeling: towards a synthesis. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2016.1111225.</p

    Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation

    Get PDF
    Understanding the origin, expansion and loss of biodiversity is fundamental to evolutionary biology. The approximately 26 living species of crocodylomorphs (crocodiles, caimans, alligators and gharials) represent just a snapshot of the group's rich 230-million-year history, whereas the fossil record reveals a hidden past of great diversity and innovation, including ocean and land-dwelling forms, herbivores, omnivores and apex predators. In this macroevolutionary study of skull and jaw shape disparity, we show that crocodylomorph ecomorphological variation peaked in the Cretaceous, before declining in the Cenozoic, and the rise and fall of disparity was associated with great heterogeneity in evolutionary rates. Taxonomically diverse and ecologically divergent Mesozoic crocodylomorphs, like marine thalattosuchians and terrestrial notosuchians, rapidly evolved novel skull and jaw morphologies to fill specialized adaptive zones. Disparity in semi-aquatic predatory crocodylians, the only living crocodylomorph representatives, accumulated steadily, and they evolved more slowly for most of the last 80 million years, but despite their conservatism there is no evidence for long-term evolutionary stagnation. These complex evolutionary dynamics reflect ecological opportunities, that were readily exploited by some Mesozoic crocodylomorphs but more limited in Cenozoic crocodylians.Sampling. We sample 240 crocodylomorph skulls and 204 lower jaws Shape analyses. Disparity was quantified using 2-D geometric morphometrics, with a mixed landmark/semi-landmarks approach. Phylogeny. A composite crocodylomorph supertree was assembled . Disparity. Disparity was quantified using custom code and the R package dispRity. Evolutionary rates. Rates of evolution were analysed in a Bayesian framework based on the multivariate variable-rates model in BayesTraits

    Friction force on a vortex due to the scattering of superfluid excitations in helium II

    Full text link
    The longitudinal friction acting on a vortex line in superfluid 4^4He is investigated within a simple model based on the analogy between such vortex dynamics and that of the quantal Brownian motion of a charged point particle in a uniform magnetic field. The scattering of superfluid quasiparticle excitations by the vortex stems from a translationally invariant interaction potential which, expanded to first order in the vortex velocity operator, gives rise to vortex transitions between nearest Landau levels. The corresponding friction coefficient is shown to be, in the limit of elastic scattering (vanishing cyclotron frequency), equivalent to that arising from the Iordanskii formula. Proposing a simple functional form for the scattering amplitude, with only one adjustable parameter whose value is set in order to get agreement to the Iordanskii result for phonons, an excellent agreement is also found with the values derived from experimental data up to temperatures about 1.5 K. Finite values of the cyclotron frequency arising from recent theories are shown to yield similar results. The incidence of vortex-induced quasiparticle transitions on the friction process is estimated to be, in the roton dominated regime, about 50 % of the value of the friction coefficient, \sim8 % of which corresponds to roton-phonon transitions and \sim42 % to roton R+RR^+\leftrightarrow R^- ones.Comment: 15 pages, 4 figures; typos corrected, to be published in PR

    No association between islet cell antibodies and coxsackie B, mumps, rubella and cytomegalovirus antibodies in non-diabetic individuals aged 7–19 years

    Get PDF
    Viral antibodies were tested in a cohort of 44 isletcell antibody-positive individuals age 7–19 years, and 44 of their islet cell antibody-negative age and sex-matched classmates selected from a population study of 4208 pupils who had been screened for islet cell antibodies. Anti-coxsackie B1-5 IgM responses were detected in 14 of 44 (32%) of the islet cell antibody-positive subjects and in 7 of 44 (16%) control subjects. This difference did not reach the level of statistical significance. None of the islet cell antibody-positive subjects had specific IgM antibodies to mumps, rubella, or cytomegalovirus. There was also no increase in the prevalence or the mean titres of anti-mumps-IgG or IgA and anti-cytomegalovirus-IgG in islet cell antibody-positive subjects compared to control subjects. These results do not suggest any association between islet cell antibodies, and possibly insulitis, with recent mumps, rubella or cytomegalo virus infection. Further studies are required to clarify the relationship between islet cell antibodies and coxsackie B virus infections

    Watching dark solitons decay into vortex rings in a Bose-Einstein condensate

    Get PDF
    We have created spatial dark solitons in two-component Bose-Einstein condensates in which the soliton exists in one of the condensate components and the soliton nodal plane is filled with the second component. The filled solitons are stable for hundreds of milliseconds. The filling can be selectively removed, making the soliton more susceptible to dynamical instabilities. For a condensate in a spherically symmetric potential, these instabilities cause the dark soliton to decay into stable vortex rings. We have imaged the resulting vortex rings.Comment: 4 pages, 4 figure

    Introduction of HIV-2 and multiple HIV-1 subtypes to Lebanon.

    Get PDF
    HIV genetic variability, phylogenetic relationships, and transmission dynamics were analyzed in 26 HIV-infected patients from Lebanon. Twenty-five specimens were identified as HIV-1 and one as HIV-2 subtype B. The 25 strains were classified into six env-C2-V3 HIV-1 subtypes: B (n = 10), A (n = 11), C (n = 1), D (n = 1), G (n = 1), and unclassifiable. Potential recombinants combining parts of viral regions from different subtypes Aenv/Dpol/Agag, Genv/Apol, and the unclassifiable-subtype(env)/unclassifiable-subtype(pol)/Agag were found in three patients. Epidemiologic analysis of travel histories and behavioral risks indicated that HIV-1 and HIV-2 subtypes reflected HIV strains prevalent in countries visited by patients or their sex partners. Spread of complex HIV-subtype distribution patterns to regions where HIV is not endemic may be more common than previously thought. Blood screening for both HIV-1 and HIV-2 in Lebanon is recommended to protect the blood supply. HIV subtype data provide information for vaccine development
    corecore