20 research outputs found

    A Possible Role of Elevated Breast Milk Lactoferrin and the Cytokine IL-17 Levels in Predicting Early Allergy in Infants: A Pilot Study

    Get PDF
    In this study, we examined the relationship between levels of lactoferrin (LF) and IL-17 in human serum and breast milk and the development of allergy in children. LF and IL-17 levels were determined by ELISA in healthy (n=19) and allergic mothers (n=21) on the 5th day after delivery. Two years later, information on breastfeeding and allergic outcomes was collected by questionnaires from parents of both groups and district child care nurses. Significantly higher concentrations of LF were found in the breast milk of allergic mothers compared to the healthy controls. At 2 years of age, only those three infants became allergic from the atopic group in whose starting breast milk samples a very high LF level (306 μg mg–1 protein) or simultaneously elevated concentrations of LF and IL-17 were measured. These findings indicate that the very early measurement of LF and IL-17 levels in the breast milk of allergic mothers may help to predict the allergy development in their infants

    Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model

    Get PDF
    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m(−1) lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m(−1) in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases

    Function-related regulation of the stability of MHC proteins.

    Get PDF
    Proteins must be stable to accomplish their biological function and to avoid enzymatic degradation. Constitutive proteolysis, however, is the main source of free amino acids used for de novo protein synthesis. In this paper the delicate balance of protein stability and degradability is discussed in the context of function of major histocompatibility complex (MHC) encoded protein. Classical MHC proteins are single-use peptide transporters that carry proteolytic degradation products to the cell surface for presenting them to T cells. These proteins fulfill their function as long as they bind their dissociable ligand, the peptide. Ligand-free MHC molecules on the cell surface are practically useless for their primary biological function, but may acquire novel activity or become an important source of amino acids when they lose their compact stable structure, which resists proteolytic attacks. We show in this paper that one or more of the stabilization centers responsible for the stability of MHC-peptide complexes is composed of residues of both the protein and the peptide, therefore missing in the ligand-free protein. This arrangement of stabilization centers provides a simple means of regulation; it makes the useful form of the protein stable, whereas the useless form of the same protein is unstable and therefore degradable
    corecore