181 research outputs found
Cross-waves induced by the vertical oscillation of a fully immersed vertical plate
Capillary waves excited by the vertical oscillations of a thin elongated
plate below an air-water interface are analyzed using time-resolved
measurements of the surface topography. A parametric instability is observed
above a well defined acceleration threshold, resulting in a so-called
cross-wave, a staggered wave pattern localized near the wavemaker and
oscillating at half the forcing frequency. This cross-wave, which is stationary
along the wavemaker but propagative away from it, is described as the
superposition of two almost anti-parallel propagating parametric waves making a
small angle of the order of with the wavemaker edge. This
contrasts with the classical Faraday parametric waves, which are exactly
stationnary because of the homogeneity of the forcing. Our observations suggest
that the selection of the cross-wave angle results from a resonant mechanism
between the two parametric waves and a characteristic length of the surface
deformation above the wavemaker.Comment: to appear in Physics of Fluid
Dynamics of grain ejection by sphere impact on a granular bed
The dynamics of grain ejection consecutive to a sphere impacting a granular
material is investigated experimentally and the variations of the
characteristics of grain ejection with the control parameters are
quantitatively studied. The time evolution of the corona formed by the ejected
grains is reported, mainly in terms of its diameter and height, and favourably
compared with a simple ballistic model. A key characteristic of the granular
corona is that the angle formed by its edge with the horizontal granular
surface remains constant during the ejection process, which again can be
reproduced by the ballistic model. The number and the kinetic energy of the
ejected grains is evaluated and allows for the calculation of an effective
restitution coefficient characterizing the complex collision process between
the impacting sphere and the fine granular target. The effective restitution
coefficient is found to be constant when varying the control parameters.Comment: 9 page
Granular Avalanches in Fluids
Three regimes of granular avalanches in fluids are put in light depending on
the Stokes number St which prescribes the relative importance of grain inertia
and fluid viscous effects, and on the grain/fluid density ratio r. In gas (r >>
1 and St > 1, e.g., the dry case), the amplitude and time duration of
avalanches do not depend on any fluid effect. In liquids (r ~ 1), for
decreasing St, the amplitude decreases and the time duration increases,
exploring an inertial regime and a viscous regime. These regimes are described
by the analysis of the elementary motion of one grain
Sources and sinks separating domains of left- and right-traveling waves: Experiment versus amplitude equations
In many pattern forming systems that exhibit traveling waves, sources and
sinks occur which separate patches of oppositely traveling waves. We show that
simple qualitative features of their dynamics can be compared to predictions
from coupled amplitude equations. In heated wire convection experiments, we
find a discrepancy between the observed multiplicity of sources and theoretical
predictions. The expression for the observed motion of sinks is incompatible
with any amplitude equation description.Comment: 4 pages, RevTeX, 3 figur
Multiple Current States of Two Phase-Coupled Superconducting Rings
The states of two phase-coupled superconducting rings have been investigated.
Multiple current states have been revealed in the dependence of the critical
current on the magnetic field. The performed calculations of the critical
currents and energy states in a magnetic field have made it possible to
interpret the experiment as the measurement of energy states into which the
system comes with different probabilities because of the equilibrium and
non-equilibrium noises upon the transition from the resistive state to the
superconducting state during the measurement of the critical currentComment: 5 pages, 5 figure
Spin Fluctuation Induced Dephasing in a Mesoscopic Ring
We investigate the persistent current in a hybrid Aharonov-Bohm ring -
quantum dot system coupled to a reservoir which provides spin fluctuations. It
is shown that the spin exchange interaction between the quantum dot and the
reservoir induces dephasing in the absence of direct charge transfer. We
demonstrate an anomalous nature of this spin-fluctuation induced dephasing
which tends to enhance the persistent current. We explain our result in terms
of the separation of the spin from the charge degree of freedom. The nature of
the spin fluctuation induced dephasing is analyzed in detail.Comment: 4 pages, 4 figure
Regular dendritic patterns induced by non-local time-periodic forcing
The dynamic response of dendritic solidification to spatially homogeneous
time-periodic forcing has been studied. Phase-field calculations performed in
two dimensions (2D) and experiments on thin (quasi 2D) liquid crystal layers
show that the frequency of dendritic side-branching can be tuned by oscillatory
pressure or heating. The sensitivity of this phenomenon to the relevant
parameters, the frequency and amplitude of the modulation, the initial
undercooling and the anisotropies of the interfacial free energy and molecule
attachment kinetics, has been explored. It has been demonstrated that besides
the side-branching mode synchronous with external forcing as emerging from the
linear Wentzel-Kramers-Brillouin analysis, modes that oscillate with higher
harmonic frequencies are also present with perceptible amplitudes.Comment: 15 pages, 23 figures, Submitted to Phys. Rev.
Persistent currents in mesoscopic rings: A numerical and renormalization group study
The persistent current in a lattice model of a one-dimensional interacting
electron system is systematically studied using a complex version of the
density matrix renormalization group algorithm and the functional
renormalization group method. We mainly focus on the situation where a single
impurity is included in the ring penetrated by a magnetic flux. Due to the
interplay of the electron-electron interaction and the impurity the persistent
current in a system of N lattice sites vanishes faster then 1/N. Only for very
large systems and large impurities our results are consistent with the
bosonization prediction obtained for an effective field theory. The results
from the density matrix renormalization group and the functional
renormalization group agree well for interactions as large as the band width,
even though as an approximation in the latter method the flow of the
two-particle vertex is neglected. This confirms that the functional
renormalization group method is a very powerful tool to investigate correlated
electron systems. The method will become very useful for the theoretical
description of the electronic properties of small conducting ring molecules.Comment: 9 pages, 8 figures include
Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel
The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves protein kinase A (PKA) activation, influx of extracellular calcium and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine- 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain oedema
- …