59 research outputs found

    Cumulative impact assessments of multiple host species loss from plant diseases show disproportionate reductions in associated biodiversity

    Get PDF
    Non-native plant pests and pathogens are increasing exponentially, causing extirpation of foundation species. The impact of large-scale declines in a single host on associated biodiversity is widely documented. However, the impact of multiple host loss on biodiversity and whether these impacts are multiplicative has not been assessed. Ecological theory suggests that systems with greater functional redundancy (alternative hosts) will be more resilient to the loss of sympatric hosts. We test this theory and show its importance in relation to pest/pathogen impact assessments. We assessed the potential impact on biodiversity of the loss of two widely occurring sympatric European tree species, Fraxinus excelsior and Quercus petraea/robur, both of which are currently threatened by a range of pests and pathogens. At the UK scale, the total number of associated species at risk of extirpation from plant diseases affecting these two sympatric hosts is greater than the sum of the associated species at risk from declines in either host alone. F. excelsior hosts 45 obligate species (species only found on that host) and Q. petraea/robur hosts 326. However, a decline in both these trees would impact 512 associated species, across multiple taxon groups, a 38% increase. Assessments at a local scale, 24 mixed F. excelsior–Q. petraea/robur woodlands revealed that these impacts may be even greater due to a lack of functional redundancy. Only 21% of sites were able to provide functional redundancy for F. excelsior and Q. petraea/robur associated species which can use other tree species. In most woodlands, the tree species required to provide functional redundancy were not present, although the site conditions were often suitable for them to grow. Synthesis. Understanding of functional redundancy should be applied to assessments of pests/pathogens impact on biodiversity. In risk assessments, higher impact scores should be given to pests/pathogens affecting hosts occurring with other host plant species already impacted by pests/pathogens. Current pest/pathogen risk assessment approaches that ignore the cumulative, cascading effects shown in this study may allow an insidious, mostly overlooked, driver of biodiversity loss to continue.Biotechnology and Biological Sciences Research Council, Grant/Award Number: BB/N022831/1; Rural and Environment Science and Analytical Services Division.info:eu-repo/semantics/publishedVersio

    Testing the virulence of some Hungarian Erwinia amylovora strains on in vitro cultured apple rootstocks

    No full text
    A useful method was improved to test and to evaluate the susceptibility of plants to fire blight and the virulence of E. amylovora strains. Six Hungarian strains from different host plants were tested on in vitro cultured apple rootstocks. Disease rating was used for the characterization of the process of disease development. The different strains had different capacity to cause disease, mainly in the first period of incubation. There were significant differences between the virulence of the strains

    Capsaicin-Sensitive Sensory Nerves Mediate the Cellular and Microvascular Effects of H2S via TRPA1 Receptor Activation and Neuropeptide Release

    No full text
    This study was supported by Hungarian Research Grant BOTKA NN-114458^, by the Hungarian Brain Research Program and National Development Agency KTIA_NAP_13-1-2013-0001, and MTA-PTE NAP B Chronic Pain Research Group, 888819. E. Pintér was supported by János Szentágothai Scholarship (A2-SZJÖ-TOK-13-0149) of the Hungarian National Excellence Program TÁMOP-4.2.4. A/2-11-1- 2012-0001. A. A. Aubdool is supported by the British Heart Foundation PG/12/34/29557. É. Sághy and M. Payrits were supported by Gedeon Richter's Talentum Foundatio
    corecore