Scotland's Rural College

Cumulative impact assessments of multiple host species loss from plant diseases show disproportionate reductions in associated biodiversity

Mitchell, Ruth J; Bellamy, Paul E; Broome, Alice; Ellis, Chris J; Hewison, Richard L; Iason, Glen R; Littlewood, Nick A; Newey, Scott; Pozsgai, Gabor; Ray, Duncan; Stockan, Jenni A; Stokes, Victoria; Taylor, Andy FS
Published in:
Journal of Ecology

DOI:

10.1111/1365-2745.13798

First published: 22/10/2021

Document Version
Peer reviewed version

Link to publication

Citation for pulished version (APA):
Mitchell, R. J., Bellamy, P. E., Broome, A., Ellis, C. J., Hewison, R. L., Iason, G. R., Littlewood, N. A., Newey, S., Pozsgai, G., Ray, D., Stockan, J. A., Stokes, V., \& Taylor, A. FS. (2021). Cumulative impact assessments of multiple host species loss from plant diseases show disproportionate reductions in associated biodiversity. Journal of Ecology. https://doi.org/10.1111/1365-2745.13798

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Journal of Ecology

2 DR RUTH JOY MITCHELL (Orcid ID : 0000-0001-8151-2769)

3 DR SCOTT NEWEY (Orcid ID : 0000-0002-2264-964X)

4 DR GABOR POZSGAI (Orcid ID : 0000-0002-2300-6558)

5 DUNCAN RAY (Orcid ID : 0000-0002-8975-8728)

6

7

8 Article type : Research Article

9 Editor : Johannes (Jean) M H Knops

12 Cumulative impact assessments of multiple host species loss from plant diseases show
13 disproportionate reductions in associated biodiversity.

14 Short title: Biodiversity, plant diseases and cumulative impacts
Authors:
Mitchell, Ruth J1*; Bellamy, Paul E²; Broome, Alice ${ }^{3}$; Ellis, Chris J4; Hewison, Richard L$;$ Iason, Glen
$17 R^{1}$; Littlewood, Nick A ${ }^{1,5}$; Newey, Scott ${ }^{1}$; Pozsgai, Gabor ${ }^{1,6}$; Ray, Duncan ${ }^{3}$; Stockan, Jenni A^{1};
18 Stokes, Victoria³; Taylor, Andy FS ${ }^{1,7}$
19
20 *Corresponding author Phone: +44 (0)344928 5231. Fax: +44 (0)344 9285429
${ }^{1}$ The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
${ }^{2}$ RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK.
${ }^{3}$ Forest Research, Northern Research Station, Roslin, Midlothian, EH25 9SY, UK.
${ }^{4}$ Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK.
${ }^{5}$ SRUC, Craibstone Estate, Bucksburn, Aberdeen AB21 9YA, UK

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1365-2745.13798

This article is protected by copyright. All rights reserved
$26{ }^{6}$ Azorean Biodiversity Group, cE3c - Centre for Ecology, Evolution and Environmental Changes,
27 University of the Azores, Rua Capitão João D`Ávila, São Pedro 9700-042 Angra do Heroísmo,
28 Portugal.
29 7Institute of Biological and Environmental Sciences, Cruickshank Building, University of Aberdeen,
30 Aberdeen, AB24 3UU, UK

This article is protected by copyright. All rights reserved

Abstract

1. Non-native plant pests and pathogens are increasing exponentially, causing extirpation of foundation species. The impact of large-scale declines in a single host on associated biodiversity is widely documented. However, the impact of multiple host loss on biodiversity and whether these impacts are multiplicative has not been assessed. Ecological theory suggests that systems with greater functional redundancy (alternative hosts) will be more resilient to loss of sympatric hosts. We test this theory and show its importance in relation to pest/pathogen impact assessments.
2. We assessed the potential impact on biodiversity of the loss of two widely occurring sympatric European tree species, Fraxinus excelsior and Quercus petraea/robur, both of which are currently threatened by a range of pests and pathogens.
3. At the UK scale, the total number of associated species at risk of extirpation from plant diseases affecting these two sympatric hosts is greater than the sum of the associated species at risk from decline of either host alone. F. excelsior hosts 45 obligate species (species only found on that host) and Q. petraea/robur 326. However, a decline in both these trees would impact 512 associated species, across multiple taxon groups, a 38% increase. Assessments at a local scale, 24 mixed F. excelsior-Q. petraea/robur woodlands, revealed that these impacts may be even greater due to a lack of functional redundancy. Only 21% of sites were able to provide functional redundancy for F. excelsior and Q. petraea/robur associated species which can use other tree species. In most woodlands, the tree species required to provide functional redundancy were not present, although the site conditions were often suitable for them to grow.
4. Synthesis: Ecological understanding of functional redundancy should be applied to assessments of pests/pathogens impact on biodiversity. In risk assessments, higher impact scores should be given to pests/pathogens affecting hosts occurring with other host plant species already impacted by pest/pathogens. Current pest/pathogen risk assessment approaches that ignore the cumulative, cascading effects shown in this study may allow an insidious, mostly overlooked, driver of biodiversity loss to continue.

This article is protected by copyright. All rights reserved

INTRODUCTION

Global biodiversity loss is occurring at unprecedented rates (Pimm et al. 2014) and the invasion of alien species, which includes non-native pests/pathogens, are one of the top five drivers of this decline (IPBES 2019). Ecosystems with high functional redundancy are expected to maintain stability as species are lost, because other species are present within the system that fulfil similar functions (Rosenfeld 2002; Laliberte et al. 2010; Pillar et al. 2013). Ecosystems dominated by a few foundation species, i.e.: "a single species that defines much of the structure of a community by creating locally stable conditions for other species, and by modulating and stabilizing, fundamental ecosystem processes" (Dayton 1972), are most at risk from a lack of functional redundancy (Walker 1992; Walker 1995).

Many temperate-zone forests, which are typically dominated by a few foundation tree species, provide examples of ecosystems with low functional redundancy (Ellison et al. 2005). These forests are currently experiencing an exponential increase in non-native tree pests/pathogens due to increased global trade and climate change (Freer-Smith \& Webber 2017) causing substantial ecological damage and economic loss (Boyd et al. 2013; Roy et al. 2014; Hill et al. 2019). Governments and their agencies are therefore horizon scanning and developing risk assessments of potential threats, for example, the European Food Safety Authority (Jeger et al. 2012), the US Animal and Plant Health Inspection Service (USDA 2021), and the UK Plant Health Risk Register (Spence 2020; Defra 2021). Such risk assessments include likelihood of pest/pathogen entry, establishment, spread and impact on tree hosts (MacLeod \& Lloyd 2020).

However, plant pest/pathogen risk assessments do not assess the potential impact of the pest/pathogen as a driver of wider biodiversity loss and their possible role in the current biodiversity crisis. Current risk assessment approaches potentially miss three important elements. First, they do not consider the cascading impacts of tree loss on associated biodiversity, species that use the tree for feeding, either directly, or indirectly (eating other organisms found on the tree), or as habitat for living in, (i.e.: lichens/bryophytes), or for breeding/roosting in (i.e.: birds and bats) (Mitchell et al. 2014a). Second, the risk assessments do not include cumulative impacts, defined as the effect on biodiversity of a decline in more than one tree species within the same site or forest stand. If sympatric tree species decline, there may

This article is protected by copyright. All rights reserved 97 associated species. There is a growing body of evidence addressing the first point, indicating that
be cumulative impacts that cascade beyond obligate species (species requiring one tree species for their survival) to associated species that may be shared between affected tree species. Third, it is assumed there is functional redundancy i.e.: that for all, but obligate species, it is assumed that the associated species could survive using alternative hosts. However, if functional redundancy is not present at an appropriate scale to support the associated species (e.g., within a site or forest stand), then the impact of tree species loss will cascade far beyond obligate species, resulting in large declines in populations, and potentially extirpations, of other a decline in one foundation tree species may impact on many hundreds of associated species (Gandhi \& Herms 2010a; Gandhi \& Herms 2010b; Ellis et al. 2012; Lõhmus \& Runnel 2014; Mitchell et al. 2019a; Hultberg et al. 2020; Lubek et al. 2020). However, the cumulative impact on biodiversity of plant pest/pathogens affecting sympatric tree species, and whether a lack of functional redundancy within the ecosystem will exacerbate these impacts (points two and three above) have not previously been studied.

Although cumulative impact assessments (CIA) of the risk of multiple diseases on a single tree species have been proposed (Davies et al. 2017), we argue the need for assessments of the cumulative impacts of diseases on associated biodiversity that occur on different trees within the same ecosystem. This would be more analogous to CIA within Environmental Impact Assessments conducted ahead of major infrastructure projects (Masden et al. 2010). Individually a decline in any one tree species due to disease, may have minor effects on biodiversity, but collectively these may be significant, potentially greater than the sum of the individual diseases acting alone. To provide a real-world context for our argument about the need for CIA we focus on the impacts of a loss of Fraxinus excelsior (European ash) and the Quercus petraea/Q. robur complex (sessile oak/pedunculate oak), two of the most common native trees in the UK (Rodwell 1991), and sympatric species across much of Europe, although the principles are applicable to diseases impacting any foundation species.
F. excelsior is currently declining across Europe due to the non-native ascomycete Hymenoscyphus fraxineus (Kjær et al. 2012). Also, F. excelsior is threatened by the non-native Emerald ash borer beetle Agrilus planipennis, that has killed millions of Fraxinus sp. trees in the

USA (Herms \& McCullough 2014), and has spread across the Eurasian landmass as far west as Ukraine (Orlova-Bienkowskaja et al. 2020). Q. petraea/robur are currently at risk from the nonnative pest, Oak Processionary Moth (Tomlinson et al. 2015), Acute Oak Decline, caused by a native insect and bacteria (Doonan et al. 2020), exacerbated by climate change (Brown et al. 2018), as well as a variety of non-native powdery mildews (Lonsdale 2015). In addition Q. petraea/robur would be a risk of decline due to Xylella fastidiosa if this bacterium established in the UK (Defra 2021).

Recent work in the UK has produced lists of the species associated with F. excelsior termed ashassociated species (Mitchell et al. 2014b) and Q. petraea/robur termed oak-associated species (Mitchell et al. 2019b; Mitchell et al. 2019c). When the alternative hosts to support the ashassociated biodiversity was assessed, Q. petraea/robur was identified as a good replacement for F. excelsior supporting 69% of the 955 ash-associated species, a higher proportion than 47 other potential hosts assessed (Mitchell et al. 2014a; Mitchell et al. 2014c). Similar work for Q. petraea/robur identified F. excelsior as a good replacement supporting 28% of the 2300 oakassociated species (the greatest proportion for any of the 30 tree species assessed) (Mitchell et al. 2019a).

Given that F. excelsior and Q. petraea/robur are sympatric and can provide functional redundancy for each other in terms of supporting many of the same associated species we ask two questions. First, what might be the cumulative impact on associated biodiversity of a decline in both these common native tree species? Second, do native woodlands provide (through the mixture of tree species present) sufficient functional redundancy to mitigate the impact of a decline in both F. excelsior and Q. petraea/robur on biodiversity?

METHOD

We study the Q. petraea/robur complex rather than either species individually, since there is taxonomic confusion around the two species, a situation further compounded by the occurrence of extensive interspecific hybridization and data suggesting a continuum of genetic and morphological variation between the two species (Gomory et al. 2001; Beatty et al. 2016). In addition data on which Quercus species is used as a host by associated species is often
unavailable (Mitchell et al. 2019a); we therefore treat the Q. petraea/robur complex as one host tree 'species' throughout.

The databases

The AshEcol database (Mitchell et al. 2014b) lists whether each of the 955 ash-associated species (12 birds, 58 bryophytes, 68 fungi, 241 invertebrates, 548 lichens, 28 mammals; Mitchell et al. 2014a; Mitchell et al. 2014c) will use any of 48 alternative tree species, while the OakEcol database (Mitchell et al. 2019b) lists whether each of the 2300 oak-associated species (38 birds, 229 bryophytes, 108 fungi, 1178 invertebrates, 716 lichens, 31 mammals; Mitchell et al. 2019a) will use any of 30 alternative tree species (Supporting Information Appendix S1). Although there is considerable overlap in the alternative tree species for which an assessment is made, these lists are not identical because F. excelsior grows on a greater range of soil types than Q. petraea/robur (Pyatt et al. 2001), resulting in a greater range of potential replacement tree species for F. excelsior depending on soil type (see Appendix S1, Table S1 in Supporting Information). In each case the alternative tree species selected for assessment were those that are either currently occurring in F. excelsior or Quercus woodlands (Rodwell 1991), or non-native species which are known to grow in the same climatic/soil conditions in which F. excelsior or Q. petraea/robur currently grow (Pyatt, Ray \& Fletcher 2001). The methods used to collate the ashand oak-associated species lists, and to assess if these species will use each alternative tree species, are described in detail in Mitchell et al. (2014a) and Mitchell et al. (2019a), respectively. Throughout the assessments below it is noted that the number of species involved is an underestimate, as neither database includes algae, bacteria, or other micro-organisms, nor do they include a complete list of all the associated fungi, only concentrating on those known fungal species with the strongest association with either F. excelsior or Q. petraea/robur.

Cumulative assessments at the national level

The databases were queried to identify the number of species known i) to be obligate on either F. excelsior or Q. petraea/robur (obligate-Fe/Qpr), ii) to only use F. excelsior and Q. petraea/robur (Fe\&Qpr-only), iii) to use F. excelsior and Q. petraea/robur and other tree species

This article is protected by copyright. All rights reserved
(Fe\&Qpr\&others). Combining the obligate-Fe/Qpr and Fe\&Qpr-only lists, provides a cumulative impact assessment of the species at risk of extirpation if both F. excelsior and Q. petraea/robur decline.

An assessment of the increased impact of losses of both tree species make to the biodiversity crisis was made by assessing which of the species identified as 'at risk' in the cumulative impact assessment (those in the obligate-Fe/Qpr and Fe\&Qpr-only lists) do not already have some form of conservation protection within the UK. The definition of conservation protection differed between taxonomic groups (as no method is systematically used across taxa) but included (i) whether the species is listed using IUCN criteria as endangered, vulnerable, or near threatened, (ii) is listed in the relevant UK Red Data book, or (iii) is a UK Biodiversity Action Plan species or (iv) a bird species listed as red or amber on the UK Birds of Conservation Concern list, see Mitchell et al. (2019a) for further details.

Cumulative assessments at the site level
Nine F. excelsior-dominated woodlands that also contain Q. petraea/robur, (termed ashdominated woods throughout) and 15 Q. petraea/robur-dominated woodlands that also contain F. excelsior, (termed oak-dominated woods throughout) were selected to be representative of either ash- or oak-dominated woodlands across Britain, where the conservation of biodiversity was a management priority (Fig.1). Sites were therefore primarily, but not always, nature reserves, or had some other form of protection (e.g. Sites of Special Scientific Interest (SSSIs) or Special Area of Conservation (SACs)).

A list of the species present at each site was collated using site records and data from the UK's National Biodiversity Network Gateway (NBN 2017). The species lists were then screened to identify any ash- or oak-associated species. This list was then split into species classed as obligate-Fe/Qpr, Fe\&Qpr-only, Fe\&Qpr\&others, using the definitions above. Combining the obligate-Fe/Qpr and Fe\&Qpr-only lists provided a cumulative impact assessment of the species present at each site at greatest risk of extirpation if both F. excelsior and Q. petraea/robur decline.

This article is protected by copyright. All rights reserved

Species at each site listed as Fe\&Qpr\&others may not be at risk of extirpation if other host tree species are present at the site. We split the Fe\&Qpr\&others list into highly associated, partially associated, and cosmopolitan species. We focussed our work on the highly associated species (species rarely uses tree species other than F. excelsior or Q. petraea/robur) and partially associated species (uses F. excelsior or Q. petraea/robur more frequently than its availability) as these species will use a smaller range of alternative trees and would therefore be at greatest risk if F. excelsior and Q. petraea/robur declined. Using AshEcol and OakEcol we identified which tree species would host the highly, and partially associated species, and recorded if these tree species were present at each site. If suitable alternatives were not present, we then assessed if they could be established at the site, i.e. if the trees would grow in the soils and climate at the site using the UK's Ecological Site Classification tool (Pyatt, Ray \& Fletcher 2001). Finally, we calculated the number of species currently present at the site that could not be supported by other tree species, either currently present at the site, or that could be established at the site.

To test if the number of associated species supported was influenced by the number of tree species present at the site, and whether the site being an ash- or oak-dominated wood was important, generalized linear models were used. The glm function within R (version 3.6.2 (R Core Team 2018)) was used with a binomial distribution, with woodland type as a fixed effect and number of tree species present as a continuous variable. The binomial distribution models the proportion of species supported whilst taking account of the number of species present. The analysis was carried out separately for the number of highly associated species supported, and the number of partially associated species supported.

RESULTS

Decline of both F. excelsior and Q. petraea/robur in the UK would result in more species being at risk than just the sum of their obligate species. There are 45 obligate ash-associated species (11 fungi, 30 invertebrates, 4 lichens) and 326 obligate oak-associated species (57 fungi, 257 invertebrates, 12 lichens) giving a total of 371 (obligate-Fe/Qpr). However, the cumulative impact assessment shows 512 species would be impacted due to an additional 141 species (13 bryophytes, 42 invertebrates, 86 lichens) that are not known to use trees other than Q. petraea/robur and F. excelsior (Fe\&Qpr-only, Fig. 2). Of the 512 species threatened by the loss of

This article is protected by copyright. All rights reserved
both F. excelsior and Q. petraea/robur 21% are already listed as having some form of conservation designation or protection indicating that they are already rare or are threatened by other drivers of change. However, the remaining 79\% are not currently listed as being at risk (Fig. 2). Thus, a decline in just these two tree species would put a further 404 species at risk of decline in the UK that are not currently identified as potentially at risk of extirpation, and therefore part of the current biodiversity crisis.

Four hundred and seventy-two species were identified that use Q. petraea/robur and F. excelsior and other tree species (Fe\&Qpr\&others, Fig. 2). For these species, mitigation would be possible, if the relevant tree species are present, or can be established, at the site.

Site level cumulative impacts and assessments of functional redundancy

Of the 24 sites assessed, 21 (88%) had species that are either obligate on F. excelsior or Q. petraea/robur (obligate-Fe/Qpr) or only use F. excelsior and Q. petraea/robur (Fe\&Qpr-only), with 40 species at risk at one site, Monks Wood (Fig. 3). These obligate species were from a range of taxon groups (bryophytes, fungi, invertebrates and lichens, Appendix S1-Table S2). In addition, the sites had records of many other species (range 10-306) that although using F. excelsior and Q. petraea/robur will also use other tree species (Fe\&Qpr\&others, Fig. 4). These species included birds, bryophytes, fungi, invertebrates, lichens and mammals (Appendix S1Table S2, Appendix S2 provides complete species lists). At 18 sites (14 oak and 4 ash woods) this included at least one species that was highly associated with either F. excelsior or Q. petraea/robur (Fig. 4, Appendix S1 - Tables S3 \&S5, Appendix S2). Only five (28\%) of these 18 sites had full functional redundancy for these highly associated species, i.e., they had other tree species present that would support all the highly associated species present (Fig. 5a). A further five sites had limited functional redundancy, containing tree species that would support some, but not all, of the highly associated species' present (Fig. 5a). Although eight sites (44\%) had no functional redundancy, in that there were no tree species present that would support the highly associated species occurring there, six of these sites had conditions (climate and soils) suitable for the introduction of other tree species that could support the associated species (Fig. 5a). Only at two sites (11\%) was there no functional redundancy and no potential to mitigate this by establishing other host trees which could grow at the site to support these species.

This article is protected by copyright. All rights reserved

All sites had species that were partially associated with F. excelsior or Q. petraea/robur (range 7137) (Fig. 4, Appendix S1 - Tables S4 and S6, Appendix S2). Only seven (29\%) of the 24 sites, (six ash-dominated woods, and one oak-dominated wood) had full functional redundancy, i.e., had tree species present that would support all the partially associated species (Fig. 5b). Most sites (17 of the 24 sites, 71%) had limited functional redundancy with tree species present that would support some but not all the species present (Fig. 5b). Nine (53\%) of the 17 sites with limited functional redundancy had the potential to have full functional redundancy if additional tree species were established. The functional redundancy at the other eight sites could be increased by establishing additional tree species, but full functional redundancy was not possible as the tree species required to support these partially associated species would not grow at these sites (Fig. 5b).

For the highly associated species there was no significant relationship between the number of tree species present at the site, in addition to F. excelsior and Q. petraea/robur, and the number of highly associated species supported $\left(\chi^{2}(1, N=18)=2.35 p>0.05\right.$, Appendix S1 - Fig. S1a). However, there was a significant relationship between the number of tree species present at the site, in addition to F. excelsior and Q. petraea/robur, and the number of partially associated species supported ($\chi^{2}(1, N=24)=59 p<0.0001$, Appendix S1-Fig. S1b). There was also a significant difference between the two woodlands types $\left(\chi^{2}(1, N=24)=11.88 p<0.0001\right)$ but no interaction between woodland type and number of tree species for partially associated species.

DISCUSSION

This study has shown that the total number of associated species at risk of extirpation from plant diseases affecting two sympatric hosts is greater than the sum of the associated species at risk from decline of either host alone. This cumulative impact puts many hundreds of associated species at risk of extirpation, most of which are not currently rare or already viewed as directly threatened. Our work also shows that the biodiversity impacts of plant diseases on associated species cannot be fully assessed unless the functional redundancy, or lack of, within the ecosystem affected is considered. Yet risk assessments generally do not take the impact of plant disease on associated biodiversity into account, nor do they account for these cumulative impacts. We have illustrated how this can be done at both a national and site level.

This article is protected by copyright. All rights reserved

Impact on biodiversity crisis

The direct effects of non-native plant pests and pathogens on biodiversity are already acknowledged as a major driver of biodiversity loss (IPBES 2019). However, the indirect effects via declines in species associated with the infected host plant are less widely acknowledged despite the growing body of evidence documenting such declines (Rabenold et al. 1998; Tingley et al. 2002; e.g. Cleavitt et al. 2008; Lõhmus \& Runnel 2014; Lubek et al. 2020). Our work is unique in that it considers the cumulative impact on biodiversity of plant pest/pathogens affecting sympatric plants, showing that the loss of two tree species is greater than sum of the associated species at risk from decline of either host alone. As the spread of non-native tree diseases is increasing exponentially (Freer-Smith \& Webber 2017), this cumulative impact on associated biodiversity is an often overlooked driver of biodiversity loss (Jonsson \& Thor 2012).

Obligate species and species with a limited range of hosts (in this example species classed as obligate-Fe/Qpr and Fe\&Qpr-only) will, by definition, be at greater risk of decline if their hosts decline. However, the site level cumulative impact assessments showed that due to a lack of functional redundancy the impacts of a decline in just two tree species cascaded far beyond the 512 species listed as only occurring on F. excelsior and/or Q. petraea/robur. Species that should be resilient to a loss of F. excelsior and Q. petraea/robur as they could be hosted by other tree species (Fe\&Qpr\&others) were shown at a site level not to be resilient as the alternative hosts were absent. Only 5 of the 24 woods (21%) were able to provide functional redundancy for all the highly and partially associated species (Fe\&Qpr\&others) that are currently present. In most woodlands, the tree species required to provide full functional redundancy were not present, although the site conditions were often suitable for them to grow.

Our work provides support for a major theme in recent guidance on sustainable forestry, which advocates that species diversity of multipurpose and conservation woodlands should be increased to enhance their resilience (Barsoum et al. 2016; Forestry Commission 2017; Bellamy et al. 2018). Previous land use (Pyles et al. 2020) and management (Bricca et al. 2020) have been shown to influence functional redundancy and hence resilience in other forests habitats. Reversing the decline in tree species diversity that has occurred in many European forests due to historical management (Ostlund et al. 1997; Svenning \& Skov 2005; Urbieta et al. 2008; Paillet et

This article is protected by copyright. All rights reserved
al. 2010) would increase functional redundancy and resilience. This in turn would limit the cascading impacts of plant diseases on biodiversity, ultimately helping to mitigate the biodiversity crisis.

If diversification of native woods is required, should this be limited to establishment of native species? Global guidelines for the sustainable use of non-native trees focussed on the risk of tree invasion (Brundu et al. 2020). A review of the wider benefits and dis-benefits of non-native trees (Ennos et al. 2019) concluded that "the use of non-natives is likely to lead to an increase rather than a decrease in pest and disease problems, and to hinder rather than support the retention of threatened native tree species and their associated biodiversity". However, this conclusion may vary at the site level, depending on the conservation status and national and global distribution of the associated species at risk. At some of the sites in this study, some associated species could only be supported by non-native trees (Appendix S1 - Tables S3-S6) and the value of non-native but naturalized trees to act as alternative hosts has been shown by Mitchell et al. (2014a).

Relevance to risk assessments

In the context of the current biodiversity crisis (IPBES 2019), current plant pest/pathogen risk assessment approaches (e.g. Spence 2020; Defra 2021) that ignore the cumulative, cascading effects shown in this study may allow an insidious, mostly overlooked, driver of biodiversity loss to continue. Risk assessments generally take account of likelihood of pest entry, establishment, spread and impact (MacLeod \& Lloyd 2020). However, the impact assessment is usually confined to the impact on the host(s) and consideration of impacts on the wider environment is limited to the risk of the disease spreading from commercial crops to native host plant species. The impact assessment does not include assessment of the impact on associated biodiversity which, as shown in this study, can include many hundreds of species. The European Food Safety Authority did consider including endangered species in their risk assessments, but they found a lack of effect and exposure data for the majority of endangered species (More et al. 2016). Here we show that the majority of species at risk are not currently rare or endangered, or on any conservation priority list.

Based on our study, we argue that plant pest/pathogen impact assessments should not only include the impact on associated biodiversity but also the cumulative impact on associated

This article is protected by copyright. All rights reserved
biodiversity of multiple pest/pathogens on sympatric hosts and an assessment as to whether there is functional redundancy within the system. If the pest/pathogen is hosted by plants occurring in ecosystems where other foundation plant species are already impacted by disease, the pest/pathogen should be given a higher impact rating within risk assessments as the functional redundancy within the system may have already declined. In the example used here, F. excelsior is already declining due to the non-native fungus Hymenoscyphus fraxineus, therefore, risk assessments for diseases that affect Q. petraea/robur, such as Xylella fastidiosa (Defra 2021), should take account of the cumulative impact this pest would have on associated biodiversity, in addition to the decline in F. excelsior.

We acknowledge that our study does not provide a complete assessment of either biodiversity loss or functional redundancy. With respect to biodiversity loss the species data at each site will not be complete and our assessments do not account for changes in the interactions between species (e.g. parasite/pests or predator/prey) that may occur during host decline, driving further changes in species abundances. The declines in F. excelsior and Q. petraea/robur will vary both spatially and temporally, therefore extirpations of a species do not imply immediate UK wide extinctions but rather a continuing loss of diversity and abundance. With respect to functional redundancy, the presence of a particular tree species doesn't automatically mean it will be a suitable host tree as it may not be the correct age (Mitchell et al. 2019a), occur in the right micro-climate (Ellis et al. 2015), or be located close enough to current hosts to achieve successful colonization (Williams \& Ellis 2018). In addition there may be other host plants beyond those tree species assessed here, such as shrubs, which may also provide functional redundancy and the suitability of some alternative hosts to support ash- or oak-associated species is unknown (Mitchell et al. 2016). Finally, this study takes a precautionary approach in defining risk by assuming that the associated species will not adapt to new hosts, as the plasticity of most of the associated species is unknown. However, this study, does provide an example of the type of assessment that can be done using the data available, and highlights for the first time that the cumulative risks to biodiversity of multiple plant diseases is greater than the sum of individual diseases.

Bringing ecological theory and risk assessment methodology together

This article is protected by copyright. All rights reserved

This study provides the first example of the need to bring the concept of cumulative impact assessments, currently used widely in Environmental Impact Assessments (e.g. Masden et al. 2010), together with ecological theory on functional redundancy. While functional redundancy is often modelled (e.g. Borrvall et al. 2000; Kaneryd et al. 2012), it is rarely measured empirically, due to the difficulty of assessing individual species' contributions (but see Pillar et al. 2013). We show the importance of understanding whether functional redundancy is present to provide a more accurate assessment of the cascading impacts of plant diseases on biodiversity, and hence their contribution to the biodiversity crisis. While the example focused on F. excelsior and Q. petraea/robur within the UK, the concepts and need for plant health risk assessments to include this type of analysis is relevant globally. In addition, this type of analysis is relevant to assessing the impact of other drivers, such as climate change, where two foundation species are both expected to decline in future climatic conditions.

ACKNOWLEDGEMENTS

This work was funded by BBSRC grant Protecting Oak Ecosystems (PuRpOsE): BB/NO22831/1 with additional funding from the Scottish Government's Rural and Environment Research and Analysis Directorate 2016-2021 strategic research programme. We thank Nick Hodgetts for collating the lists of the bryophyte species associated with ash and oak, Ralph Harmer for conducting some of the site visits, and the site owners for allowing us access to the sites. Katharine Preedy provided statistical advice. Steve Albon and Robin Pakeman kindly provided comments to improve earlier drafts.

CONFLICT OF INTEREST: the authors declare no conflicts of interest.

AUTHOR CONTRIBUTION STATEMENT: RJM conceived the idea, did the analysis and drafted the manuscript. PB, CJE, GRI, NAL, SN, GP, JAS, and AFST collated data on species use of ash and oak. $A B, R L H, R J M, D R$, and VS were involved in site assessments. All authors commented on the manuscript.

DATA AVAILABILITY: All data is publicly available. The AshEcol database is available at http://publications.naturalengland.org.uk/publication/5273931279761408, the OakEcol

This article is protected by copyright. All rights reserved
database is available at https://doi.org/10.5285/22b3d41e-7c35-4c51-9e55-0f47bb845202 and species data from the sites was downloaded from National Biodiversity Network Gateway, https://nbn.org.uk/the-national-biodiversity-network/archive-information/nbn-gateway/. The species data from the sites together with information about their level of assoication with Fraxinus excelsior and Quercus petraea/robur is presented in Appendix S2.

REFERENCES

Barsoum, N., Coote, L., Eycott, A.E., Fuller, L., Kiewitt, A. \& Davies, R.G. (2016) Diversity, functional structure and functional redundancy of woodland plant communities: How do mixed tree species plantations compare with monocultures? Forest Ecology and Management, 382, 244-256. 10.1016/j.foreco.2016.10.005

Beatty, G.E., Montgomery, W.I., Spaans, F., Tosh, D.G. \& Provan, J. (2016) Pure species in a continuum of genetic and morphological variation: sympatric oaks at the edge of their range. Annals of Botany, 117, 541-549. 10.1093/aob/mcw002

Bellamy, C., Barsoum, N., Cottrell, J. \& Watts, K. (2018) Encouraging biodiversity at multiple scales in support of resilient woodlands. Forestry Commission Research Note 033.

Borrvall, C., Ebenman, B. \& Jonsson, T. (2000) Biodiversity lessens the risk of cascading extinction in model food webs. Ecology Letters, 3, 131-136. 10.1046/j.1461-0248.2000.00130.x

Boyd, I.L., Freer-Smith, P.H., Gilligan, C.A. \& Godfray, H.C.J. (2013) The consequence of tree pests and diseases for ecosystem services. Science, 3421235773 (1232013). DOI: 1235710.1231126/science.1235773. 10.1126/science. 1235773

Bricca, A., Chelli, S., Canullo, R. \& Cutini, M. (2020) The Legacy of the Past Logging: How Forest Structure Affects Different Facets of Understory Plant Diversity in Abandoned Coppice Forests. DiversityBasel, 12, 13. 10.3390/d12030109

Brown, N., Vanguelova, E., Parnell, S. \& Broadmeadow, S. (2018) Predisposition of forests to biotic disturbance: Predicting the distribution of Acute Oak Decline using environmental factors. Forest Ecology and Management, 407, 145-154.

Brundu, G., Pauchard, A., Pysek, P., Pergl, J., Bindewald, A.M., Brunori, A., Canavan, S., Campagnaro, T., Celesti-Grapow, L., Dechoum, M.D., Dufour-Dror, J.M., Essl, F., Flory, S.L., Genovesi, P., Guarino, F., Guangzhe, L., Hulme, P.E., Jager, H., Kettle, C.J., Krumm, F. et al. (2020) Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota, 65-116. 10.3897/neobiota.65.58380

This article is protected by copyright. All rights reserved

Cleavitt, N.L., Eschtruth, A.K., Battles, J.J. \& Fahey, T.J. (2008) Bryophyte response to eastern hemlock decline caused by hemlock woolly adelgid infestation. Journal of the Torrey Botanical Society, 135, 12-25. 10.3159/07-ra-030.1

Davies, S., Patenaude, G. \& Snowdon, P. (2017) A new approach to assessing the risk to woodland from pest and diseases. Forestry, 90, 319-331. 10.1093/forestry/cpx001

Dayton, P. (1972) Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. Proceedings of the colloquium on conservation problems in Antarctica. (ed. B. Parker). Allen Press, Lawrence, KS.

Defra (2021) UK Plant Health Risk register. DEFRA.
Doonan, J.M., Broberg, M., Denman, S. \& McDonald, J.E. (2020) Host-microbiota-insect interactions drive emergent virulence in a complex tree disease. Proceedings of the Royal Society B-Biological Sciences, 287. 10.1098/rspb.2020.0956

Ellis, C.J., Coppins, B.J. \& Hollingsworth, P.M. (2012) Lichens under threat from ash dieback. Nature, 491, 672-672.

Ellis, C.J., Eaton, S., Theodoropoulos, M. \& Elliott, K. (2015) Epiphyte communities and indicator species. An ecological guide for Scotland's woodlands. The Royal Botanic Garden, Edinburgh.

Ellison, A.M., Bank, M.S., Clinton, B.D., Colburn, E.A., Elliott, K., Ford, C.R., Foster, D.R., Kloeppel, B.D., Knoepp, J.D., Lovett, G.M., Mohan, J., Orwig, D.A., Rodenhouse, N.L., Sobczak, W.V., Stinson, K.A., Stone, J.K., Swan, C.M., Thompson, J., Von Holle, B. \& Webster, J.R. (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 3, 479-486. 10.1890/1540-9295(2005)003[0479:lofscf]2.0.co;2

Ennos, R., Cottrell, J., Hall, J. \& O'Brien, D. (2019) Is the introduction of novel exotic forest tree species a rational response to rapid environmental change? - A British perspective. Forest Ecology and Management, 432, 718-728.

Forestry Commission (2017) The UK Forestry Standard. Edinburgh.
Freer-Smith, P.H. \& Webber, J.F. (2017) Tree pests and diseases: the threat to biodiversity and the delivery of ecosystem services. Biodiversity and Conservation, 26, 3167-3181. 10.1007/s10531-015-1019-0

Gandhi, K.J.K. \& Herms, D.A. (2010a) Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biological Invasions, 12, 389-405. 10.1007/s10530-009-9627-9

Gandhi, K.J.K. \& Herms, D.A. (2010b) North American arthropods at risk due to widespread Fraxinus mortality caused by the Alien Emerald ash borer. Biological Invasions, 12, 1839-1846. 10.1007/s10530-009-9594-1

Gomory, D., Yakovlev, I., Zhelev, P., Jedinakova, J. \& Paule, L. (2001) Genetic differentiation of oak populations within the Quercus robur/Quercus petraea complex in Central and Eastern Europe. Heredity, 86, 557-563. 10.1046/j.1365-2540.2001.00874.x

Herms, D.A. \& McCullough, D.G. (2014) Emerald Ash Borer Invasion of North America: History, Biology, Ecology, Impacts, and Management. Annual Review of Entomology, Vol 59, 2014 (ed. M.R. Berenbaum), pp. 13-30. Annual Reviews, Palo Alto.

Hill, L., Jones, G., Atkinson, N., Hector, A., Hemery, G. \& Brown, N. (2019) The 15 pound billion cost of ash dieback in Britain. Current Biology, 29, R315-R316. 10.1016/j.cub.2019.03.033
Hultberg, T., Witzell, J., Sandström, J., Felton, A., Öhman, K., Rönnberg, J. \& Cleary, M. (2020) Ash dieback risks an extinction cascade. Biological Conservation, 244. https://doi.org/10.1016/j.biocon.2020.108516

IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (eds E. Brondizio, J. Settele, S. Díaz \& H. Ngo). Bonn, Germany.

Jeger, M., Schans, J., Lövei, G., van Lenteren, J., Navajas, M., Makowski, D., Stancanelli, G., Tramontini, S. \& Ceglarska, E. (2012) Risk assessment in support of plant health EFSA Journal, 10, s1012. Jonsson, M.T. \& Thor, G. (2012) Estimating Coextinction Risks from Epidemic Tree Death: Affiliate Lichen Communities among Diseased Host Tree Populations of Fraxinus excelsior. Plos One, 7, (9): e45701. 10.1371/journal.pone. 0045701
Kaneryd, L., Borrvall, C., Berg, S., Curtsdotter, A., Eklof, A., Hauzy, C., Jonsson, T., Munger, P., Setzer, M., Saterberg, T. \& Ebenman, B. (2012) Species-rich ecosystems are vulnerable to cascading extinctions in an increasingly variable world. Ecology and Evolution, 2, 858-874. 10.1002/ece3.218
Kjær, E.D., McKinney, L.V., Nielsen, L.R., Hansen, L.N. \& Hansen, J.K. (2012) Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evolutionary Applications, 5, 219-228. 10.1111/j.1752-4571.2011.00222.x
Laliberte, E., Wells, J.A., DeClerck, F., Metcalfe, D.J., Catterall, C.P., Queiroz, C., Aubin, I., Bonser, S.P., Ding, Y., Fraterrigo, J.M., McNamara, S., Morgan, J.W., Merlos, D.S., Vesk, P.A. \& Mayfield, M.M. (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters, 13, 76-86. 10.1111/j.1461-0248.2009.01403.x

This article is protected by copyright. All rights reserved

503 Lubek, A., Kukwa, M., Czortek, P. \& Jaroszewicz, B. (2020) Impact of Fraxinus excelsior dieback on biota of
Lõhmus, A. \& Runnel, K. (2014) Ash dieback can rapidly eradicate isolated epiphyte populations in production forests: A case study. Biological Conservation, 169, 185-188.
10.1016/j.biocon.2013.11.031

Lonsdale, D. (2015) Review of oak mildew, with particular reference to mature and veteran trees in Britain. Arboricultural Journal, 37, 61-84. 10.1080/03071375.2015.1039839 ash-associated lichen epiphytes at the landscape and community level. Biodiversity and Conservation, 29, 431-450. 10.1007/s10531-019-01890-w

MacLeod, A. \& Lloyd, S. (2020) The emergence of prioritisation systems to inform plant health biosecurity policy decisions. Emerging Topics in Life Sciences, 4, 463-471. 10.1042/etls20200341

Masden, E.A., Fox, A.D., Furness, R.W., Bullman, R. \& Haydon, D.T. (2010) Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework. Environmental Impact Assessment Review, 30, 1-7. 10.1016/j.eiar.2009.05.002

Mitchell, R.J., Beaton, J.K., Bellamy, P.E., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Gimona, A., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Iason, G.R., Kerr, G., Littlewood, N.A., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A. et al. (2014a) Ash dieback in the UK: A review of the ecological and conservation implications and potential management options. Biological Conservation, 175, 95-109. 10.1016/j.biocon.2014.04.019

Mitchell, R.J., Bellamy, P.E., Ellis, C.J., Hewison, R.L., Hodgetts, N.G., Iason, G.R., Littlewood, N.A., Newey, S., Stockan, J.A. \& Taylor, A.F.S. (2019a) Collapsing foundations: The ecology of the British oak, implications of its decline and mitigation options. Biological Conservation, 233, 316-327. 10.1016/j.biocon.2019.03.040

Mitchell, R.J., Bellamy, P.E., Ellis, C.J., Hewison, R.L., Hodgetts, N.G., Iason, G.R., Littlewood, N.A., Newey, S., Stockan, J.A. \& Taylor, A.F.S. (2019b) Oak-associated biodiversity in the UK (OakEcol). NERC Environmental Information Data Centre. https://doi.org/10.5285/22b3d41e-7c35-4c51-9e55Of47bb845202'.

Mitchell, R.J., Bellamy, P.E., Ellis, C.J., Hewison, R.L., Hodgetts, N.G., lason, G.R., Littlewood, N.A., Newey, S., Stockan, J.A. \& Taylor, A.F.S. (2019c) OakEcol: A database of Oak-associated biodiversity within the UK. Data in Brief, 25.

Mitchell, R.J., Broome, A., Harmer, R., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Duncan, R., Ellis, C.J., Hester, A.J., Hodgetts, N.G., Iason, G.R., Littlewood, N.A., Mackinnon, M., Pakeman, R., Pozsgai, G., Ramsey, S., Riach, D., Stockan, J.A., Taylor, A.F.S. \& Woodward, S. (2014b) AshEcol: A spreadsheet of Ash-associated biodiversity. Natural England

This article is protected by copyright. All rights reserved

Mitchell, R.J., Broome, A., Harmer, R., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Ellis, C.J., Hester, A.J., Hodgetts, N.G., Iason, G.R., Littlewood, N.A., Mackinnon, M., Pakeman, R.J., Pozsgai, G., Ramsey, S., Ray, D., Riach, D., Stockan, J.A., Taylor, A.F.S. \& Woodward, S. (2014c) Assessing and addressing the impacts of ash dieback on UK woodlands and trees of conservation importance (Phase 2). Natural England Commissioned Reports, Number 151. Natural England, Peterborough.

Mitchell, R.J., Pakeman, R.J., Broome, A., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Ellis, C.J., Hester, A.J., Hodgetts, N.G., Iason, G.R., Littlewood, N.A., Pozsgai, G., Ramsay, S., Riach, D., Stockan, J.A., Taylor, A.F.S. \& Woodward, S. (2016) How to replicate the functions and biodiversity of a threatened tree species? The case of Fraxinus excelsior in Britain. Ecosystems, 19, 573-586. 10.1007/s10021-015-9953-y

More, S., Mortensen, A., Ricci, A., Silano, V., Knutsen, K.H., Rychen, G., Naegeli, H., Turck, D., Jeger, M.J., Ockleford, C., Benford, D., Halldorsson, T., Hardy, A., Noteborn, H., Schlatter, J.R., Solecki, R. \& Comm, E.S. (2016) Coverage of endangered species in environmental risk assessments at EFSA. EFSA Journal, 14, 124. 10.2903/j.efsa.2016.4312

NBN (2017) National Biodiversity Network Gateway, accessed various dates 2019.
Orlova-Bienkowskaja, M.J., Drogvalenko, A.N., Zabaluev, I.A., Sazhnev, A.S., Peregudova, E.Y., Mazurov, S.G., Komarov, E.V., Struchaev, V.V., Martynov, V.V., Nikulina, T.V. \& Bienkowski, A.O. (2020) Current range of Agrilus planipennis Fairmaire, an alien pest of ash trees, in European Russia and Ukraine. Annals of Forest Science, 77, 14. 10.1007/s13595-020-0930-z

Ostlund, L., Zackrisson, O. \& Axelsson, A.L. (1997) The history and transformation of a Scandinavian boreal forest landscape since the 19th century. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere, 27, 1198-1206. 10.1139/cjfr-27-8-1198

Paillet, Y., Berges, L., Hjalten, J., Odor, P., Avon, C., Bernhardt-Romermann, M., Bijlsma, R.J., De Bruyn, L., Fuhr, M., Grandin, U., Kanka, R., Lundin, L., Luque, S., Magura, T., Matesanz, S., Meszaros, I., Sebastia, M.T., Schmidt, W., Standovar, T., Tothmeresz, B. et al. (2010) Biodiversity Differences between Managed and Unmanaged Forests: Meta-Analysis of Species Richness in Europe. Conservation Biology, 24, 101-112. 10.1111/j.1523-1739.2009.01399.x

Pillar, V.D., Blanco, C.C., Muller, S.C., Sosinski, E.E., Joner, F. \& Duarte, L.D.S. (2013) Functional redundancy and stability in plant communities. Journal of Vegetation Science, 24, 963-974. 10.1111/jvs. 12047

Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts, C.M. \& Sexton, J.O. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 987-+. 10.1126/science. 1246752

This article is protected by copyright. All rights reserved

580 Spence, N. (2020) Implementation of the GB Plant Health and Biosecurity Strategy 2014-2019 with

589 Tomlinson, I., Potter, C. \& Bayliss, H. (2015) Managing tree pests and diseases in urban settings: The case of Oak Processionary Moth in London, 2006-2012. Urban Forestry \& Urban Greening, 14, 286-292. 10.1016/j.ufug.2015.02.009

Urbieta, I.R., Zavala, M.A. \& Maranon, T. (2008) Human and non-human determinants of forest composition in southern Spain: evidence of shifts towards cork oak dominance as a result of management over the past century. Journal of Biogeography, 35, 1688-1700. 10.1111/j.13652699.2008.01914.x

This article is protected by copyright. All rights reserved

596 USDA (2021) Risk Analysis Process.

597 Walker, B. (1995) Conserving biological diversity through ecosystem resilience. Conservation Biology, 9, 747-752. 10.1046/j.1523-1739.1995.09040747.x
59
599 Walker, B.H. (1992) Biodiversity and ecological redundancy. Conservation Biology, 6, 18-23. 10.1046/j.1523-1739.1992.610018.x

601 Williams, L. \& Ellis, C.J. (2018) Ecological constraints to 'old-growth' lichen indicators: Niche specialism or 602 dispersal limitation? Fungal Ecology, 34, 20-27. 10.1016/j.funeco.2018.03.007

This article is protected by copyright. All rights reserved

Fig 1: Site locations. A = Fraxinus excelsior dominated woodlands with Quercus petraea/robur present, $\mathrm{O}=Q$. petraea/robur dominated woodlands with F. excelsior present. $\mathrm{A} 1=$ Bredon hill; A2 $=$ Cleghorn Glen; A3 = Downton George; A4 = Glasdrum; A5 = Raincliffe and Forge Valley; A6 = Rassal; A7 = Roudsea wood; A8 = Sapiston Grove; A9 = West Williamston; O1 = Ariundle; O2 = Borrowdale; O3 = Britty Common; O4 = Dalkeith; O5 = Dinnet; O6 = Drummond Loch; O7 = Glen Nant; O8 = Monks wood; O9 = Mugdock; O10 = Raindale; O11 = Stratfield Brake; O12 = Totley Wood; 013 = Tower Wood; 014 = Wood of Cree; 015 = Writtle.

■Protected \square Not protected

Fig. 2 Number of species that are obligate on Fraxinus excelsior (Fe) and Quercus petraea/robur $(Q p / r)$, only use F. excelsior and Q. petraea/robur (Fe\&Qpr-only) or use F. excelsior and Q. petraea/robur and other tree species (Fe\&Qpr\&others) in the UK. Protected = currently has some form of conservation protection or designation. Not protected = currently does not have any form of conservation protection or designation.

Figure 3. Number of species associated with Fraxinus excelsior and Quercus petraea/robur recorded at 24 mixed ash/oak woodlands in the UK that are: obligate on F. excelsior (ObligateFe), obligate on Q. petraea/robur (Obligate-Qp/r), or only use F. excelsior and Q. petraea/robur (Fe\&Qpr-only).

Figure 4. Number of species recorded at 24 mixed ash/oak woodlands in the UK that use F. excelsior and Q. petraea/robur and other tree species (Fe\&Qpr\&others) and their level of association with F. excelsior at ash dominated sites and Q. petraea/robur at oak dominated sites. Highly associated $=$ species rarely uses tree species other than F. excelsior or Q. petraea/robur). Partially associated = uses F. excelsior or Q. petraea/robur more frequently than its availability in the landscape. Cosmopolitan = uses F. excelsior or Q. petraea/robur as frequently or lower than their availability.
a) Highly associated species

b) Partially associated species

Hosted by tree species present at the site, other than F. exce/sior and Q. petraea/robur.
Hosted by tree species not present at the site, but that would grow at the site if introduced.
Not hosted by tree species, other than other than F. exce/sior and Q. petraea/robur, either present at the site or by tree species that could be introduced.

Figure 5. Functional redundancy of 24 mixed ash/oak woodlands in the UK to support ash-and oak-associated species if F. excelsior and Q. petraea/robur were lost from the site. a) Highly associated species, b) Partially associated species. Data for each site shows total number of associated species recorded at the site that use F. excelsior and Q. petraea/robur and other tree species (Fe\&Qpr\&others) and is subdivided according to whether the associated species are i) supported by tree species, other than F. excelsior and Q. petraea/robur, currently present at the site (white part of bar), ii) supported by tree species that are not currently present at the site but that would grow at the site if introduced (grey part of bar), or iii) is not hosted by trees in either of the previous categories (black part of bar). The red number in the white and grey parts of the bar indicates the number of tree species involved.

This article is protected by copyright. All rights reserved

