1,093 research outputs found
Analysis of the Scanning Tunneling Microscopy Images of the Charge Density Wave Phase in Quasi-one-dimensional Rb0.3MoO3
The experimental STM images for the CDW phase of the blue bronze RbMoO3 have
been successfully explained on the basis of first-principles DFT calculations.
Although the density of states near the Fermi level strongly concentrates in
two of the three types of Mo atoms Mo-II and Mo-III, the STM measurement mostly
probes the contribution of the uppermost O atoms of the surface, associated
with the Mo-IO6 octahedra. In addition, it is found that the surface
concentration of Rb atoms plays a key role in determining the surface nesting
vector and hence the periodicity of the CDW modulation. Significant
experimental inhomogeneities of the b* surface component of the wavevector of
the modulation, probed by STM, are reported. The calculated changes in the
surface nesting vector are consistent with the observed experimental
inhomogeneities.Comment: 4 pages 5 Figure
Maximizing decision rate in multisensory integration
Effective decision-making in an uncertain world requires making use of all available information, even if distributed across different sensory modalities, as well as trading off the speed of a decision with its accuracy. In tasks with a fixed stimulus presentation time, animal and human subjects have previously been shown to combine information from several modalities in a statistically optimal manner. Furthermore, for easily discriminable stimuli and under the assumption that reaction times result from a race-to-threshold mechanism, multimodal reaction times are typically faster than predicted from unimodal conditions when assuming independent (parallel) races for each modality. However, due to a lack of adequate ideal observer models, it has remained unclear whether subjects perform optimal cue combination when they are allowed to choose their response times freely.
Based on data collected from human subjects performing a visual/vestibular heading discrimination task, we show that the subjects exhibit worse discrimination performance in the multimodal condition than predicted by standard cue combination criteria, which relate multimodal discrimination performance to sensitivity in the unimodal conditions. Furthermore, multimodal reaction times are slower than those predicted by a parallel race model, opposite to what is commonly observed for easily discriminable stimuli.
Despite violating the standard criteria for optimal cue combination, we show that subjects still accumulate evidence optimally across time and cues, even when the strength of the evidence varies with time. Additionally, subjects adjust their decision bounds, controlling the trade-off between speed and accuracy of a decision, such that they feature correct decision rates close to the maximum achievable value
A New Scenario on the Metal-Insulator Transition in VO2
The metal-insulator transition in VO2 was investigated using the three-band
Hubbard model, in which the degeneracy of the 3d orbitals, the on-site Coulomb
and exchange interactions, and the effects of lattice distortion were
considered. A new scenario on the phase transition is proposed, where the
increase in energy level separation among the t_2g orbitals caused by the
lattice distortion triggers an abrupt change in the electronic configuration in
doubly occupied sites from an S=1 Hund's coupling state to a spin S=0 state
with much larger energy, and this strongly suppresses the charge fluctuation.
Although the material is expected to be a Mott-Hubbard insulator in the
insulating phase, the metal-to-insulator transition is not caused by an
increase in relative strength of the Coulomb interaction against the electron
hopping as in the usual Mott transition, but by the level splitting among the
t_2g orbitals against the on-site exchange interaction. The metal-insulator
transition in Ti2O3 can also be explained by the same scenario. Such a large
change in the 3d orbital occupation at the phase transition can be detected by
linear dichroic V 2p x-ray absorption measurements.Comment: 5 pages, 5 figures, to be published in J. Phys. Soc. Jpn. Vol. 72 No.
1
High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: growth conditions, strain relaxation and In incorporation kinetics
We report the interplay between In incorporation and strain relaxation
kinetics in high-In-content InxGa1-xN (x = 0.3) layers grown by plasma-assisted
molecular-beam epitaxy. For In mole fractions x = 0.13-0.48, best structural
and morphological quality is obtained under In excess conditions, at In
accumulation limit, and at a growth temperature where InGaN decomposition is
active. Under such conditions, in situ and ex situ analysis of the evolution of
the crystalline structure with the growth thickness points to an onset of
misfit relaxation after the growth of 40 nm, and a gradual relaxation during
more than 200 nm which results in an inhomogeneous strain distribution along
the growth axis. This process is associated with a compositional pulling
effect, i.e. indium incorporation is partially inhibited in presence of
compressive strain, resulting in a compositional gradient with increasing In
mole fraction towards the surface
Anomalous dispersion of optical phonons at the neutral-ionic transition: Evidence from diffuse X-ray scattering
Diffuse X-ray data for mixed stack organic charge-transfer crystals
approaching the neutral-ionic phase transition can be quantitatively explained
as due to the softening of the optical phonon branch. The interpretation is
fully consistent with vibrational spectra, and underlines the importance of
electron-phonon coupling in low-dimensional systems with delocalized electrons.Comment: 4 pages, 4 figure
Low temperature structural effects in the (TMTSF)PF and AsF Bechgaard salts
We present a detailed low-temperature investigation of the statics and
dynamics of the anions and methyl groups in the organic conductors
(TMTSF)PF and (TMTSF)AsF (TMTSF :
tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure
refinement of the fully deuterated (TMTSF)PF-D12 salt allows locating
precisely the methyl groups at 4 K. This structure is compared to the one of
the fully hydrogenated (TMTSF)PF-H12 salt previously determined at the
same temperature. Surprisingly it is found that deuteration corresponds to the
application of a negative pressure of 5 x 10 MPa to the H12 salt. Accurate
measurements of the Bragg intensity show anomalous thermal variations at low
temperature both in the deuterated PF and AsF salts. Two different
thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect
the presence of low-frequency modes at characteristic energies {\theta} =
8.3 K and {\theta} = 6.7 K for the PF-D12 and AsF-D12 salts,
respectively. These modes correspond to the low-temperature methyl group
motion. Large-Bragg-angle measurements evidence an unexpected structural change
around 55 K which probably corresponds to the linkage of the anions to the
methyl groups via the formation of F...D-CD2 bonds observed in the 4 K
structural refinement. Finally we show that the thermal expansion coefficient
of (TMTSF)PF is dominated by the librational motion of the PF
units. We quantitatively analyze the low-temperature variation of the lattice
expansion via the contribution of Einstein oscillators, which allows us to
determine for the first time the characteristic frequency of the PF6
librations: {\theta} = 50 K and {\theta} = 76 K for the PF-D12 and
PF-H12 salts, respectively
Linear viscoelastic properties of high reclaimed asphalt content mixes with biobinders
The use of high Reclaimed Asphalt (RA) content mixtures together with binders produced from renewable resources (biobinders) is one of the current challenges in pavement engineering research. On one hand, RA has been used for decades but there are still some concerns about its performance, especially when high contents are used (>30%). On the other hand, biobinders are relatively new materials which have to be deeply characterised and studied in order to develop good-practices for their use. In this paper, linear viscoelastic properties of biobinders and bio-mixtures manufactured with high-RA content and biobinders are analysed and discussed. High-modulus mixtures with 50% RA were selected for the mix design. Binders and mixtures were tested over a wide range of asphalt service temperatures and frequencies by means of DSR and two-point bending tests respectively. Results show that biobinders have an important effect on mixtures behaviour. However, no direct links between their linear viscoelastic properties were found. Bio-asphalt mixtures still need further development for commercial exploitation; however the take-away fact of this investigation is that it is possible to manufacture asphalt-like mixtures with acceptable viscoelastic properties while being composed only of RA and non-petroleum based binders
Modulation of charge-density waves by superlattice structures
We discuss the interplay between electronic correlations and an underlying
superlattice structure in determining the period of charge density waves
(CDW's), by considering a one-dimensional Hubbard model with a repeated
(non-random) pattern of repulsive (U>0) and free (U=0) sites. Density matrix
renormalization group diagonalization of finite systems (up to 120 sites) is
used to calculate the charge-density correlation function and structure factor
in the ground state. The modulation period can still be predicted through
effective Fermi wavevectors, k_F*, and densities, and we have found that it is
much more sensitive to electron (or hole) doping, both because of the narrow
range of densities needed to go from q*=0 to \pi, but also due to sharp
2k_F*-4k_F* transitions; these features render CDW's more versatile for actual
applications in heterostructures than in homogeneous systems.Comment: 4 pages, 5 figures, to appear in Phys Rev
Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCrS from first principles
We have studied the dielectric properties of the ferromagnetic spinel
CdCrS from first principles. Zone-center phonons and Born effective
charges were calculated by frozen-phonon and Berry phase techniques within
LSDA+U. We find that all infrared-active phonons are quite stable within the
cubic space group. The calculated static dielectric constant agrees well with
previous measurements. These results suggest that the recently observed
anomalous dielectric behavior in CdCrS is not due to the softening of a
polar mode. We suggest further experiments to clarify this point
- …