438 research outputs found

    Dynamics of Excited Electrons in Copper: Role of Auger Electrons

    Full text link
    Within a theoretical model based on the Boltzmann equation, we analyze in detail the structure of the unusual peak recently observed in the relaxation time in Cu. In particular, we discuss the role of Auger electrons in the electron dynamics and its dependence on the d-hole lifetime, the optical transition matrix elements and the laser pulse duration. We find that the Auger contribution to the distribution is very sensitive to both the d-hole lifetime tau_h and the laser pulse duration tau_l and can be expressed as a monotonic function of tau_l/tau_h. We have found that for a given tau_h, the Auger contribution is significantly smaller for a short pulse duration than for a longer one. We show that the relaxation time at the peak depends linearly on the d-hole lifetime, but interestingly not on the amount of Auger electrons generated. We provide a simple expression for the relaxation time of excited electrons which shows that its shape can be understood by a phase space argument and its amplitude is governed by the d-hole lifetime. We also find that the height of the peak depends on both the ratio of the optical transition matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured for polycrystalline Cu.Comment: 6 pages, 6 figure

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.

    Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment

    Get PDF
    Both theoretical and experimental results for the dynamics of photoexcited electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and Ni are presented. A model for the dynamics of excited electrons is developed, which is based on the Boltzmann equation and includes effects of photoexcitation, electron-electron scattering, secondary electrons (cascade and Auger electrons), and transport of excited carriers out of the detection region. From this we determine the time-resolved two-photon photoemission (TR-2PPE). Thus a direct comparison of calculated relaxation times with experimental results by means of TR-2PPE becomes possible. The comparison indicates that the magnitudes of the spin-averaged relaxation time \tau and of the ratio \tau_\uparrow/\tau_\downarrow of majority and minority relaxation times for the different ferromagnetic transition metals result not only from density-of-states effects, but also from different Coulomb matrix elements M. Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.Comment: 23 pages, 11 figures, added a figure and an appendix, updated reference

    Hole dynamics in noble metals

    Full text link
    We present a detailed analysis of hole dynamics in noble metals (Cu and Au), by means of first-principles many-body calculations. While holes in a free-electron gas are known to live shorter than electrons with the same excitation energy, our results indicate that d-holes in noble metals exhibit longer inelastic lifetimes than excited sp-electrons, in agreement with experiment. The density of states available for d-hole decay is larger than that for the decay of excited electrons; however, the small overlap between d- and sp-states below the Fermi level increases the d-hole lifetime. The impact of d-hole dynamics on electron-hole correlation effects, which are of relevance in the analysis of time-resolved two-photon photoemission experiments, is also addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Radiation Hardness of Thin Low Gain Avalanche Detectors

    Full text link
    Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure where an appropriate doping of the multiplication layer (p+) leads to high enough electric fields for impact ionization. Gain factors of few tens in charge significantly improve the resolution of timing measurements, particularly for thin detectors, where the timing performance was shown to be limited by Landau fluctuations. The main obstacle for their operation is the decrease of gain with irradiation, attributed to effective acceptor removal in the gain layer. Sets of thin sensors were produced by two different producers on different substrates, with different gain layer doping profiles and thicknesses (45, 50 and 80 um). Their performance in terms of gain/collected charge and leakage current was compared before and after irradiation with neutrons and pions up to the equivalent fluences of 5e15 cm-2. Transient Current Technique and charge collection measurements with LHC speed electronics were employed to characterize the detectors. The thin LGAD sensors were shown to perform much better than sensors of standard thickness (~300 um) and offer larger charge collection with respect to detectors without gain layer for fluences <2e15 cm-2. Larger initial gain prolongs the beneficial performance of LGADs. Pions were found to be more damaging than neutrons at the same equivalent fluence, while no significant difference was found between different producers. At very high fluences and bias voltages the gain appears due to deep acceptors in the bulk, hence also in thin standard detectors

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    Kvalitativna procjena eliminacije TCP-a i TAMORF-a iz organizma štakora metodom GC-MS

    Get PDF
    Nerve agents are highly toxic organophosphorus (OP) compounds. They inhibit acetylcholinesterase (AChE), an enzyme that hydrolyses acetycholine (ACh) in the nervous system. Pathophysiological changes caused by OP poisonings are primarily the consequence of surplus ACh on cholinergic receptors and in the central nervous system. Standard treatment of OP poisoning includes combined administration of carbamates, atropine, oximes and anticonvulsants. In order to improve therapy, new compounds have been synthesised and tested. Tenocyclidine (TCP) and its adamantane derivative 1-[2-(2-thienyl)-2-adamantyl] morpholine (TAMORF) have shown interesting properties against soman poisoning. In this study, we developed a qualitative GC-MS method to measure elimination of TCP and TAMORF through rat urine in order to learn more about the mechanisms through which TCP protects an organism from OP poisoning and to determine the duration of this protective effect. GC-MS showed that six hours after treatment with TCP, rat urine contained only its metabolite 1-thienylcyclohexene, while urine of rats treated with TAMORF contained both TAMORF and its metabolites.Živčani bojni otrovi po strukturi su organofosforni (OP) spojevi, čija je zajednička značajka ireverzibilna inhibicija acetilkolinesteraze (AChE), enzima koji hidrolizira acetilkolin (ACh) u živčanom sustavu. Patofi ziološka zbivanja koja nastaju pri otrovanju OP-spojevima primarno su posljedica akumuliranog ACh na kolinergičkim receptorima i u središnjem živčanom sustavu. Još uvijek nesavršen, standardni tretman liječenja otrovanja OP-spojevima uključuje kombiniranu primjenu estera karbamata, atropina, oksima i antikonvulziva. Kako bi se unaprijedila uobičajena terapija, osobito kod otrovanja somanom, ispituju se antidotski učinci mnogih spojeva. Tenociklidin (TCP) i njegov adamantanski derivat TAMORF pokazali su zanimljiva svojstva pomoćne terapije pri otrovanju somanom. Kako bi se proširile dosadašnje spoznaje o načinu na koji tenociklidini štite organizam od trovanja OP-spojevima te također o trajanju njihova antidotskog učinka, u ovom radu razvijena je GC-MS-metoda za praćenje eliminacije TCP-a i TAMORF-a iz organizma. Rezultati GC-MS-analize pokazali su da šest sati nakon tretiranja štakora TCP-om mokraće sadržavaju metabolit TCP-a 1-tienilcikloheksen, dok šest sati nakon tretiranja štakora TAMORF-om mokraće sadržavaju i TAMORF i njegove metabolite. Drugim riječima, šest sati nakon tretmana TCP se potpuno metabolizira, dok se TAMORF metabolizira djelomično, a djelomično ostaje nepromijenjen

    Oat Intake and Risk of Type 2 Diabetes, Cardiovascular Disease and All-Cause Mortality: A Systematic Review and Meta-Analysis

    Get PDF
    Cardiovascular disease (CVD) and type 2 diabetes (T2D) remain the top disease and mortality burdens worldwide. Oats have been shown to benefit cardiovascular health and improve insulin resistance. However, the evidence linking oat consumption with CVD, T2D and all-cause mortality remains inconclusive. We conducted a comprehensive systematic review and meta-analysis of prospective cohort studies to evaluate the associations between oat consumption and risks of T2D, CVD and all-cause mortality in the general population. Five electronic databases were searched until September, 2020. Study specific relative risks (RR) were meta-analyzed using random effect models. Of 4686 relevant references, we included 9 articles, based on 8 unique studies and 471,157 participants. Comparing oat consumers versus non-consumers, RRs were 0.86 (95% CI 0.72–1.03) for T2D incidence and 0.73 (95% CI 0.5–1.07) for combined CVD incidence. Comparing participants with highest versus lowest oat intake, RRs were 0.78 (95% CI 0.74–0.82) for T2D incidence, 0.81 (95% CI 0.61–1.08) for CHD incidence and 0.79 (95% CI 0.59–1.07) for stroke. For all-cause mortality one study based on three cohorts found RR for men and women were 0.76 (95% CI 0.69–0.85) and 0.78 (95% CI 0.70–0.87), respectively. Most studies (n = 6) were of fair to good quality. This meta-analysis suggests that consumption of oat could reduce the risk for T2D and all-cause mortality, while no significant association was found for CVD. Future studies should address a lack of standardized methods in assessing overall oat intake and type of oat products, and investigate a dose-dependent response of oat products on cardiometabolic outcomes in order to introduce oat as preventive and treatment options for the public

    Gate control of sensory neurotransmission in peripheral ganglia by proprioceptive sensory neurons

    Get PDF
    Melzak and Wall's gate control theory proposed that innocuous input into the dorsal horn of the spinal cord represses pain-inducing nociceptive input. Here we show that input from proprioceptive parvalbumin-expressing sensory neurons tonically represses nociceptor activation within dorsal root ganglia. Deletion of parvalbumin-positive sensory neurons leads to enhanced nociceptor activity measured with GCaMP3, increased input into wide dynamic range neurons of the spinal cord and increased acute and spontaneous pain behaviour, as well as potentiated innocuous sensation. Parvalbumin-positive sensory neurons express the enzymes and transporters necessary to produce vesicular GABA that is known to be released from depolarized somata. These observations support the view that gate control mechanisms occur peripherally within dorsal root ganglia

    The role of occupied d states in the relaxation of hot electrons in Au

    Get PDF
    We present first-principles calculations of electron-electron scattering rates of low-energy electrons in Au. Our full band-structure calculations indicate that a major contribution from occupied d states participating in the screening of electron-electron interactions yields lifetimes of electrons in Au with energies of 1.03.0eV1.0-3.0 {\rm eV} above the Fermi level that are larger than those of electrons in a free-electron gas by a factor of 4.5\sim 4.5. This prediction is in agreement with a recent experimental study of ultrafast electron dynamics in Au(111) films (J. Cao {\it et al}, Phys. Rev. B {\bf 58}, 10948 (1998)), where electron transport has been shown to play a minor role in the measured lifetimes of hot electrons in this material.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
    corecore