1,986 research outputs found
Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited
Fast reconnection operating in magnetically dominated plasmas is often
invoked in models for magnetar giant flares, for magnetic dissipation in pulsar
winds, or to explain the gamma-ray flares observed in the Crab nebula, hence
its investigation is of paramount importance in high-energy astrophysics. Here
we study, by means of two dimensional numerical simulations, the linear phase
and the subsequent nonlinear evolution of the tearing instability within the
framework of relativistic resistive magnetohydrodynamics, as appropriate in
situations where the Alfven velocity approaches the speed of light. It is found
that the linear phase of the instability closely matches the analysis in
classical MHD, where the growth rate scales with the Lundquist number S as
S^-1/2, with the only exception of an enhanced inertial term due to the thermal
and magnetic energy contributions. In addition, when thin current sheets of
inverse aspect ratio scaling as S^-1/3 are considered, the so-called "ideal"
tearing regime is retrieved, with modes growing independently on S and
extremely fast, on only a few light crossing times of the sheet length. The
overall growth of fluctuations is seen to solely depend on the value of the
background Alfven velocity. In the fully nonlinear stage we observe an inverse
cascade towards the fundamental mode, with Petschek-type supersonic jets
propagating at the external Alfven speed from the X-point, and a fast
reconnection rate at the predicted value R~(ln S)^-1.Comment: 14 pages, 9 figures, accepted for publication (MNRAS
Activation of MHD reconnection on ideal timescales
Magnetic reconnection in laboratory, space and astrophysical plasmas is often
invoked to explain explosive energy release and particle acceleration. However,
the timescales involved in classical models within the macroscopic MHD regime
are far too slow to match the observations. Here we revisit the tearing
instability by performing visco-resistive two-dimensional numerical simulations
of the evolution of thin current sheets, for a variety of initial
configurations and of values of the Lunquist number , up to . Results
confirm that when the critical aspect ratio of is reached in the
reconnecting current sheets, the instability proceeds on ideal (Alfv\'enic)
macroscopic timescales, as required to explain observations. Moreover, the same
scaling is seen to apply also to the local, secondary reconnection events
triggered during the nonlinear phase of the tearing instability, thus
accelerating the cascading process to increasingly smaller spatial and temporal
scales. The process appears to be robust, as the predicted scaling is measured
both in inviscid simulations and when using a Prandtl number in the
viscous regime.Comment: Accepted for publication in Plasma Physics and Controlled Fusio
Can Gravity Distinguish Between Dirac and Majorana Neutrinos?
We show that spin-gravity interaction can distinguish between Dirac and
Majorana neutrino wave packets propagating in a Lense-Thirring background.
Using time-independent perturbation theory and gravitational phase to generate
a perturbation Hamiltonian with spin-gravity coupling, we show that the
associated matrix element for the Majorana neutrino differs significantly from
its Dirac counterpart. This difference can be demonstrated through significant
gravitational corrections to the neutrino oscillation length for a two-flavour
system, as shown explicitly for SN1987A.Comment: 4 pages, 2 figures; minor changes of text; typo corrected; accepted
in Physical Review Letter
Experimental Characterization of a Passive Emergency Heat Removal System for a GenIII + Reactor
Among the several types of passive safety systems adopted in new generation reactor designs, the experimental investigation of a closed loop, two-phase flow, natural circulation system is depicted. Emergency Heat Removal Systems (EHRSs) based on this solution are envisaged as safety-engineered features for advanced nuclear reactors, as in the IRIS reactor. An experimental facility simulating one EHRS-like loop has been built and operated at SIET labs in Piacenza (Italy). The facility is a natural circulation, sliding pressure, and electrically heated loop, with a helical coil steam generator as a heat source and a horizontal tube pool condenser as a heat sink. A steady-state analysis is provided to characterize the system behaviour and its key parameters. Because of the loop limited volume, oscillations of the main parameters (temperatures, flowrate, pressure) may be expected. The oscillating phenomena detected during the experimental campaign are discussed; a reasonable explanation is at last proposed
Prevalence of Toxocara canis eggs in dog faeces from public places of Florence, Italy
AbstractTo determine whether canine faecal contamination may represent a source of environmental contamination with Toxocara canis eggs within the urban area of Florence, a total number of 754 dog faeces were collected in 7 public places and examined by routine floatation technique during one-year period. The total prevalence of intestinal nematode eggs was 8.6 %. Trichuris vulpis (4.6 %) eggs were the most prevalent followed by T. canis (3.6 %) and Ancylostomidae (1.7 %) eggs. Mixed infections included T. canis/T. vulpis (0.7 %), Ancylostomidae/T. canis (0.4 %), and Ancylosto-midae/T. vulpis (0.3 %). Total prevalence of intestinal nematode eggs was significantly higher in spring than in winter (OR = 2.06). Our results indicate a low prevalence of T. canis eggs suggesting that dog faeces left on soil are unlikely to cause high environmental contamination with T. canis eggs in the town of Florence
Energy-maximising model predictive control for a multi degree-of-freedom pendulum-based wave energy system
Renewable energy sources can be a solution for the recent pollution increasing scenario and the need for diversification of the energy market. Among such alternative sources,wave energy represents a viable solution, due to the its high power density and accessibility.Nonetheless, wave energy is still in phase of development, and a key stepping stone towards commercialisation is strongly linked to the availability of optimal control strategies for maximum energy harvesting. With its ability to handle system constraints and optimise power absorption directly, model predictive control (MPC) has gained popularity within the WEC community as a potential solution for the corresponding energy-maximising problem. In this study, an MPC strategy is developed for real-time control of the so-called PeWEC energy harvesting system,providing also a solution for the wave excitation estimation and forecasting problem, inherently required by the MPC controller to achieve optimal performance. Improved computational requirements are obtained via definition of a reduced control-oriented model, describing the dynamics of the system in a compact form. The performance of the proposed strategy is illustrated via a comprehensive numerical appraisal
On Density Wave Instability Phenomena – Modelling and Experimental Investigation
Density Wave Oscillations (DWOs) are dealt with in this work as the most representative instabilities frequently encountered in the boiling systems. This dynamic type instability mode – resulting from multiple feedback effects between the flow rate, the vapour generation rate and the pressure drops in the boiling channel – constitutes an issue of special interest for the design of industrial systems and equipments involving vapour generation. The chapter is structured as follows. Physical insight into the distinctive features leading to DWO mechanism is provided in Section 2. Modelling and experimental investigations on instability phenomena available from the open literature are described in Section 3. Section 4 and 5 present the analytical modelling developed in this work for DWO theoretical predictions, whereas numerical modelling (using RELAP5 and COMSOL codes) is briefly discussed in Section 6. Modelling efforts start necessarily from the simplifying and sound case of straight vertical tube geometry, which is referenced for validating the whole modelling tools. Description of the experimental campaign for DWO characterization in helical coil tubes is shortly presented in Section 7. The peculiar influence of the helical shape on the instability occurrence is examined in Section 8. Suited modifications of the models are introduced in order to simulate the experimental results
Monitoring alkylphenols in water using the polar organic chemical integrative sampler (POCIS): determining sampling rates via the extraction of PES membranes and Oasis beads
Polar organic chemical integrative samplers (POCIS) have previously been used to monitor alkylphenol (AP) contamination in water and produced water. However, only the sorbent receiving phase of the POCIS (Oasis beads) is traditionally analyzed, thus limiting the use of POCIS for monitoring a range of APs with varying hydrophobicity. Here a “pharmaceutical” POCIS was calibrated in the laboratory using a static renewal setup for APs (from 2-ethylphenol to 4-n-nonylphenol) with varying hydrophobicity (log Kow between 2.47 and 5.76). The POCIS sampler was calibrated over its 28 day integrative regime and sampling rates (Rs) were determined. Uptake was shown to be a function of AP hydrophobicity where compounds with log Kow < 4 were preferentially accumulated in Oasis beads, and compounds with log Kow > 5 were preferentially accumulated in the PES membranes. A lag phase (over a 24 h period) before uptake in to the PES membranes occurred was evident. This work demonstrates that the analysis of both POCIS phases is vital in order to correctly determine environmentally relevant concentrations owing to the fact that for APs with log Kow ≤ 4 uptake, to the PES membranes and the Oasis beads, involves different processes compared to APs with log Kow ≥ 4. The extraction of both the POCIS matrices is thus recommended in order to assess the concentration of hydrophobic APs (log Kow ≥ 4), as well as hydrophilic APs, most effectively. © 2017 Elsevier Lt
- …