6,667 research outputs found

    Deep u*- and g-band Imaging of the Spitzer Space Telescope First Look Survey Field : Observations and Source Catalogs

    Get PDF
    We present deep u*-, and g-band images taken with the MegaCam on the 3.6 m Canada-France-Hawaii Telescope (CFHT) to support the extragalactic component of the Spitzer First Look Survey (hereafter, FLS). In this paper we outline the observations, present source catalogs and characterize the completeness, reliability, astrometric accuracy and number counts of this dataset. In the central 1 deg2 region of the FLS, we reach depths of g~26.5 mag, and u*~26.2 mag (AB magnitude, 5σ\sigma detection over a 3" aperture) with ~4 hours of exposure time for each filter. For the entire FLS region (~5 deg2 coverage), we obtained u*-band images to the shallower depth of u*=25.0--25.4 mag (5σ\sigma, 3" aperture). The average seeing of the observations is 0.85" for the central field, and ~1.00" for the other fields. Astrometric calibration of the fields yields an absolute astrometric accuracy of 0.15" when matched with the SDSS point sources between 18<g<22. Source catalogs have been created using SExtractor. The catalogs are 50% complete and greater than 99.3% reliable down to g~26.5 mag and u*~26.2 mag for the central 1 deg2 field. In the shallower u*-band images, the catalogs are 50% complete and 98.2% reliable down to 24.8--25.4 mag. These images and source catalogs will serve as a useful resource for studying the galaxy evolution using the FLS data.Comment: 15 pages, 16 figure

    Universal Robotic Gripper based on the Jamming of Granular Material

    Full text link
    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multi-fingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.Comment: 10 pages, 7 figure

    Dynamic Boundaries in Asymmetric Exclusion Processes

    Get PDF
    We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice, particles can adsorb or desorb, and the right boundary is defined by a wall particle. The confining wall particle has intrinsic forward and backward hopping, a net leftward drift, and cannot desorb. Performing Monte Carlo simulations and using a moving-frame finite segment approach coupled to mean field theory, we find the parameter regimes in which the wall acquires a steady state position. In other regimes, the wall will either drift to the left and fall off the lattice at the injection site, or drift indefinitely to the right. Our results are discussed in the context of non-equilibrium phases of the system, fluctuating boundary layers, and particle densities in the lab frame versus the frame of the fluctuating wall.Comment: 13 page

    A Different Impression Technique for a Single Tooth Crown Over the ITI Implant

    Get PDF
    The single tooth implant has common use in the field of implant dentistry and many studies report high success rates. Improvements in implant design, range of prosthetic components and restorative materials have made it possible to achieve optimal cosmetic results, although tissue contouring problems may sometimes limit optimum aesthetics, especially in the anterior maxilla. This case report describes a different impression technique, by using zinc-oxide eugenol impression paste, to take a precise impression of the periimplant tissues around the subgingival part of the ITI implant, to achieve an optimal cosmetic effect

    Higher-Order Tarski Grothendieck as a Foundation for Formal Proof

    Get PDF
    We formally introduce a foundation for computer verified proofs based on higher-order Tarski-Grothendieck set theory. We show that this theory has a model if a 2-inaccessible cardinal exists. This assumption is the same as the one needed for a model of plain Tarski-Grothendieck set theory. The foundation allows the co-existence of proofs based on two major competing foundations for formal proofs: higher-order logic and TG set theory. We align two co-existing Isabelle libraries, Isabelle/HOL and Isabelle/Mizar, in a single foundation in the Isabelle logical framework. We do this by defining isomorphisms between the basic concepts, including integers, functions, lists, and algebraic structures that preserve the important operations. With this we can transfer theorems proved in higher-order logic to TG set theory and vice versa. We practically show this by formally transferring Lagrange\u27s four-square theorem, Fermat 3-4, and other theorems between the foundations in the Isabelle framework

    Prototype ultrasonic wayfinder with haptic feedback for an IOT environment

    Get PDF
    Pervasive computing and the Internet of Things (IoT) have stimulated the development of many new assistive devices. It is possible to incorporate sensors such as acoustic, inductive, capacitive, temperature, humidity, pressure, location, and many more. Haptic feedback provides a person with sensory information through the skin using vibration or force-feedback responses. Commercial organizations have moved very quickly into this design space, particularly Sunu (smart-watch), HandSight (cameras on glove), and others. Arduino and Raspberry Pi are examples of the computing platforms currently in use. Sonar or ultrasonic transducers enable the production of lighter equipment with improved functionalities. Sonar as a means of assistive navigation has been used extensively in maritime environments to detect animals (D'Amico and Pittenger, 2009, Evans and Awbrey, 1988). As an assistive technology, there are projects for the blind which upgrade their walking sticks with an ultrasonic sensor (Amemiya and Sugiyama, 2010). Similar projects have been undertaken worldwide and most devices can only provide one or two designated functions. The size of the completed device is small enough to embed on a shoe, a walking stick, or on a wheelchair. A sonar sensor can detect something less than a meter from an individual user. This study uses a glove to attach a sonar sensor on a Raspberry Pi 0, whereas the Tacit glove (Hoefer, 2011) carries two sonar sensors with an Arduino controller actuating vibrating motors on a glove

    Binaural advantages in users of bimodal and bilateral cochlear implant devices

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1121/1.4831955.This paper investigates to what extent users of bilateral and bimodal fittings should expect to benefit from all three different binaural advantages found to be present in normal-hearing listeners. Head-shadow and binaural squelch are advantages occurring under spatially separated speech and noise, while summation emerges when speech and noise coincide in space. For 14 bilateral or bimodal listeners, speech reception thresholds in the presence of four-talker babble were measured in sound-field under various speech and noise configurations. Statistical analysis revealed significant advantages of head-shadow and summation for both bilateral and bimodal listeners. Squelch was significant only for bimodal listeners

    Coulomb effects on growth of instabilities in asymmetric nuclear matter

    Get PDF
    We study the effects of the Coulomb interaction on the growth of unstable modes in asymmetric nuclear matter. In order to compare with previous calculations we use a semiclassical approach based on the linearized Vlasov equation. Moreover, a quantum calculation is performed within the R.P.A.. The Coulomb effects are a slowing down of the growth and the occurrence of a minimal wave vector for the onset of the instabilities. The quantum corrections cause a further decrease of the growth rates.Comment: 10 pages, revtex, 4 ps figures, to appear in Phys. Rev. C e-mail: [email protected], [email protected]

    Polarization observables in the processes p+pΘ++Σ+p+p\to \Theta^+ +\Sigma^+ and n+pΘ++Λ0n+p\to \Theta^+ +\Lambda^0, for any spin and parity of the Θ+\Theta^+-hyperon in the threshold region

    Full text link
    Using the symmetry properties of the strong interaction, such as the Pauli principle, the P-invariance, the conservation of the total angular momentum and isotopic invariance, we establish the spin structure of the threshold matrix elements for the processes p+pΘ++Σ+p+p\to \Theta^+ +\Sigma^+ and n+pΘ++Λ0n+p\to \Theta^+ +\Lambda^0, in a model independent way, which applies to any spin and parity of the Θ+\Theta^+-hyperon in the near threshold region. We predict the double spin observables for these processes, such as the dependence of the differential cross section on the polarizations of the colliding nucleons, and the coefficients of polarization transfer from a nucleon beam or target to the produced Σ+\Sigma^+ or Λ0\Lambda^0 hyperon. We prove that these observables are sensitive to the P-parity of the Θ+\Theta^+ baryon, for any value of its spin. As an example of dynamical considerations, we analyzed these reactions in the framework of K-meson exchange.Comment: 14 pages 1 figur
    corecore